BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31171634)

  • 1. A machine-learning approach for accurate detection of copy number variants from exome sequencing.
    Pounraja VK; Jayakar G; Jensen M; Kelkar N; Girirajan S
    Genome Res; 2019 Jul; 29(7):1134-1143. PubMed ID: 31171634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the reproducibility of exome copy number variations predictions.
    Hong CS; Singh LN; Mullikin JC; Biesecker LG
    Genome Med; 2016 Aug; 8(1):82. PubMed ID: 27503473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate in silico confirmation of rare copy number variant calls from exome sequencing data using transfer learning.
    Tan R; Shen Y
    Nucleic Acids Res; 2022 Nov; 50(21):e123. PubMed ID: 36124672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polishing copy number variant calls on exome sequencing data via deep learning.
    Özden F; Alkan C; Çiçek AE
    Genome Res; 2022 Jun; 32(6):1170-1182. PubMed ID: 35697522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ECOLE: Learning to call copy number variants on whole exome sequencing data.
    Mandiracioglu B; Ozden F; Kaynar G; Yilmaz MA; Alkan C; Cicek AE
    Nat Commun; 2024 Jan; 15(1):132. PubMed ID: 38167256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-capture multiplexing provides additional power to detect copy number variation in exome sequencing.
    Filer DL; Kuo F; Brandt AT; Tilley CR; Mieczkowski PA; Berg JS; Robasky K; Li Y; Bizon C; Tilson JL; Powell BC; Bost DM; Jeffries CD; Wilhelmsen KC
    BMC Bioinformatics; 2021 Jul; 22(1):374. PubMed ID: 34284719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLAMMS: a scalable algorithm for calling common and rare copy number variants from exome sequencing data.
    Packer JS; Maxwell EK; O'Dushlaine C; Lopez AE; Dewey FE; Chernomorsky R; Baras A; Overton JD; Habegger L; Reid JG
    Bioinformatics; 2016 Jan; 32(1):133-5. PubMed ID: 26382196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient detection of copy-number variations using exome data: Batch- and sex-based analyses.
    Uchiyama Y; Yamaguchi D; Iwama K; Miyatake S; Hamanaka K; Tsuchida N; Aoi H; Azuma Y; Itai T; Saida K; Fukuda H; Sekiguchi F; Sakaguchi T; Lei M; Ohori S; Sakamoto M; Kato M; Koike T; Takahashi Y; Tanda K; Hyodo Y; Honjo RS; Bertola DR; Kim CA; Goto M; Okazaki T; Yamada H; Maegaki Y; Osaka H; Ngu LH; Siew CG; Teik KW; Akasaka M; Doi H; Tanaka F; Goto T; Guo L; Ikegawa S; Haginoya K; Haniffa M; Hiraishi N; Hiraki Y; Ikemoto S; Daida A; Hamano SI; Miura M; Ishiyama A; Kawano O; Kondo A; Matsumoto H; Okamoto N; Okanishi T; Oyoshi Y; Takeshita E; Suzuki T; Ogawa Y; Handa H; Miyazono Y; Koshimizu E; Fujita A; Takata A; Miyake N; Mizuguchi T; Matsumoto N
    Hum Mutat; 2021 Jan; 42(1):50-65. PubMed ID: 33131168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of copy number variants from exome sequence data.
    Samarakoon PS; Sorte HS; Kristiansen BE; Skodje T; Sheng Y; Tjønnfjord GE; Stadheim B; Stray-Pedersen A; Rødningen OK; Lyle R
    BMC Genomics; 2014 Aug; 15(1):661. PubMed ID: 25102989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WISExome: a within-sample comparison approach to detect copy number variations in whole exome sequencing data.
    Straver R; Weiss MM; Waisfisz Q; Sistermans EA; Reinders MJT
    Eur J Hum Genet; 2017 Dec; 25(12):1354-1363. PubMed ID: 29255179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of copy number variation detection tools for cancer using whole exome sequencing data.
    Zare F; Dow M; Monteleone N; Hosny A; Nabavi S
    BMC Bioinformatics; 2017 May; 18(1):286. PubMed ID: 28569140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Sparse Model Based Detection of Copy Number Variations From Exome Sequencing Data.
    Duan J; Wan M; Deng HW; Wang YP
    IEEE Trans Biomed Eng; 2016 Mar; 63(3):496-505. PubMed ID: 26258935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise cancellation using total variation for copy number variation detection.
    Zare F; Hosny A; Nabavi S
    BMC Bioinformatics; 2018 Oct; 19(Suppl 11):361. PubMed ID: 30343665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth.
    Fromer M; Moran JL; Chambert K; Banks E; Bergen SE; Ruderfer DM; Handsaker RE; McCarroll SA; O'Donovan MC; Owen MJ; Kirov G; Sullivan PF; Hultman CM; Sklar P; Purcell SM
    Am J Hum Genet; 2012 Oct; 91(4):597-607. PubMed ID: 23040492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SavvyCNV: Genome-wide CNV calling from off-target reads.
    Laver TW; De Franco E; Johnson MB; Patel KA; Ellard S; Weedon MN; Flanagan SE; Wakeling MN
    PLoS Comput Biol; 2022 Mar; 18(3):e1009940. PubMed ID: 35294448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CNVind: an open source cloud-based pipeline for rare CNVs detection in whole exome sequencing data based on the depth of coverage.
    Kuśmirek W; Nowak R
    BMC Bioinformatics; 2022 Mar; 23(1):85. PubMed ID: 35247967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Detection Rate of Copy Number Variations Using Capture Sequencing Data: A Retrospective Study.
    Sun Y; Ye X; Fan Y; Wang L; Luo X; Liu H; Gao X; Gong Z; Wang Y; Qiu W; Zhang H; Han L; Liang L; Ye H; Xiao B; Gu X; Yu Y
    Clin Chem; 2020 Mar; 66(3):455-462. PubMed ID: 32031585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exome copy number variant detection, analysis, and classification in a large cohort of families with undiagnosed rare genetic disease.
    Lemire G; Sanchis-Juan A; Russell K; Baxter S; Chao KR; Singer-Berk M; Groopman E; Wong I; England E; Goodrich J; Pais L; Austin-Tse C; DiTroia S; O'Heir E; Ganesh VS; Wojcik MH; Evangelista E; Snow H; Osei-Owusu I; Fu J; Singh M; Mostovoy Y; Huang S; Garimella K; Kirkham SL; Neil JE; Shao DD; Walsh CA; Argilli E; Le C; Sherr EH; Gleeson JG; Shril S; Schneider R; Hildebrandt F; Sankaran VG; Madden JA; Genetti CA; Beggs AH; Agrawal PB; Bujakowska KM; Place E; Pierce EA; Donkervoort S; Bönnemann CG; Gallacher L; Stark Z; Tan TY; White SM; Töpf A; Straub V; Fleming MD; Pollak MR; Õunap K; Pajusalu S; Donald KA; Bruwer Z; Ravenscroft G; Laing NG; MacArthur DG; Rehm HL; Talkowski ME; Brand H; O'Donnell-Luria A
    Am J Hum Genet; 2024 May; 111(5):863-876. PubMed ID: 38565148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germline CNV Detection through Whole-Exome Sequencing (WES) Data Analysis Enhances Resolution of Rare Genetic Diseases.
    Tilemis FN; Marinakis NM; Veltra D; Svingou M; Kekou K; Mitrakos A; Tzetis M; Kosma K; Makrythanasis P; Traeger-Synodinos J; Sofocleous C
    Genes (Basel); 2023 Jul; 14(7):. PubMed ID: 37510394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copy number variants calling from WES data through eXome hidden Markov model (XHMM) identifies additional 2.5% pathogenic genomic imbalances smaller than 30 kb undetected by array-CGH.
    Tisserant E; Vitobello A; Callegarin D; Verdez S; Bruel AL; Aho Glele LS; Sorlin A; Viora-Dupont E; Konyukh M; Marle N; Nambot S; Moutton S; Racine C; Garde A; Delanne J; Tran-Mau-Them F; Philippe C; Kuentz P; Poulleau M; Payet M; Poe C; Thauvin-Robinet C; Faivre L; Mosca-Boidron AL; Thevenon J; Duffourd Y; Callier P
    Ann Hum Genet; 2022 Jul; 86(4):171-180. PubMed ID: 35141892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.