These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 31171772)

  • 1. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells.
    Haythorne E; Rohm M; van de Bunt M; Brereton MF; Tarasov AI; Blacker TS; Sachse G; Silva Dos Santos M; Terron Exposito R; Davis S; Baba O; Fischer R; Duchen MR; Rorsman P; MacRae JI; Ashcroft FM
    Nat Commun; 2019 Jun; 10(1):2474. PubMed ID: 31171772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes.
    Lu H; Koshkin V; Allister EM; Gyulkhandanyan AV; Wheeler MB
    Diabetes; 2010 Feb; 59(2):448-59. PubMed ID: 19903739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tight coupling between glucose and mitochondrial metabolism in clonal beta-cells is required for robust insulin secretion.
    Malmgren S; Nicholls DG; Taneera J; Bacos K; Koeck T; Tamaddon A; Wibom R; Groop L; Ling C; Mulder H; Sharoyko VV
    J Biol Chem; 2009 Nov; 284(47):32395-404. PubMed ID: 19797055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Superoxide Production Decreases on Glucose-Stimulated Insulin Secretion in Pancreatic β Cells Due to Decreasing Mitochondrial Matrix NADH/NAD
    Plecitá-Hlavatá L; Engstová H; Holendová B; Tauber J; Špaček T; Petrásková L; Křen V; Špačková J; Gotvaldová K; Ježek J; Dlasková A; Smolková K; Ježek P
    Antioxid Redox Signal; 2020 Oct; 33(12):789-815. PubMed ID: 32517485
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolomic analyses reveal profound differences in glycolytic and tricarboxylic acid cycle metabolism in glucose-responsive and -unresponsive clonal β-cell lines.
    Spégel P; Malmgren S; Sharoyko VV; Newsholme P; Koeck T; Mulder H
    Biochem J; 2011 Apr; 435(1):277-84. PubMed ID: 21208194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP synthase inhibitory factor subunit 1 regulates islet β-cell function via repression of mitochondrial homeostasis.
    Zhang K; Bao R; Huang F; Yang K; Ding Y; Lauterboeck L; Yoshida M; Long Q; Yang Q
    Lab Invest; 2022 Jan; 102(1):69-79. PubMed ID: 34608240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial dysfunction contributes to impaired insulin secretion in INS-1 cells with dominant-negative mutations of HNF-1alpha and in HNF-1alpha-deficient islets.
    Pongratz RL; Kibbey RG; Kirkpatrick CL; Zhao X; Pontoglio M; Yaniv M; Wollheim CB; Shulman GI; Cline GW
    J Biol Chem; 2009 Jun; 284(25):16808-16821. PubMed ID: 19376774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallothionein 1 negatively regulates glucose-stimulated insulin secretion and is differentially expressed in conditions of beta cell compensation and failure in mice and humans.
    Bensellam M; Shi YC; Chan JY; Laybutt DR; Chae H; Abou-Samra M; Pappas EG; Thomas HE; Gilon P; Jonas JC
    Diabetologia; 2019 Dec; 62(12):2273-2286. PubMed ID: 31624901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor-1{beta} plays a critical role in maintaining glucose-stimulated anaplerosis and insulin release from pancreatic {beta}-cells.
    Pillai R; Huypens P; Huang M; Schaefer S; Sheinin T; Wettig SD; Joseph JW
    J Biol Chem; 2011 Jan; 286(2):1014-24. PubMed ID: 21059654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomics Reveals the GSK3-PDX1 Axis as a Key Pathogenic Signaling Node in Diabetic Islets.
    Sacco F; Seelig A; Humphrey SJ; Krahmer N; Volta F; Reggio A; Marchetti P; Gerdes J; Mann M
    Cell Metab; 2019 Jun; 29(6):1422-1432.e3. PubMed ID: 30879985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of the malate-aspartate shuttle in mouse pancreatic islets abolishes glucagon secretion without affecting insulin secretion.
    Stamenkovic JA; Andersson LE; Adriaenssens AE; Bagge A; Sharoyko VV; Gribble F; Reimann F; Wollheim CB; Mulder H; Spégel P
    Biochem J; 2015 May; 468(1):49-63. PubMed ID: 25731850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmented mitochondrial energy metabolism is an early response to chronic glucose stress in human pancreatic beta cells.
    Chareyron I; Christen S; Moco S; Valsesia A; Lassueur S; Dayon L; Wollheim CB; Santo Domingo J; Wiederkehr A
    Diabetologia; 2020 Dec; 63(12):2628-2640. PubMed ID: 32960311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic and functional specialisations of the pancreatic beta cell: gene disallowance, mitochondrial metabolism and intercellular connectivity.
    Rutter GA; Georgiadou E; Martinez-Sanchez A; Pullen TJ
    Diabetologia; 2020 Oct; 63(10):1990-1998. PubMed ID: 32894309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taurine increases glucose sensitivity of UCP2-overexpressing beta-cells by ameliorating mitochondrial metabolism.
    Han J; Bae JH; Kim SY; Lee HY; Jang BC; Lee IK; Cho CH; Lim JG; Suh SI; Kwon TK; Park JW; Ryu SY; Ho WK; Earm YE; Song DK
    Am J Physiol Endocrinol Metab; 2004 Nov; 287(5):E1008-18. PubMed ID: 15265758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The diabetic β-cell: hyperstimulated vs. hyperexcited.
    Nichols CG; Remedi MS
    Diabetes Obes Metab; 2012 Oct; 14 Suppl 3(0 3):129-35. PubMed ID: 22928573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of mitochondrial FAD-linked glycerol-3-phosphate dehydrogenase does not correct glucose-stimulated insulin secretion from diabetic GK rat pancreatic islets.
    Ueda K; Tanizawa Y; Ishihara H; Kizuki N; Ohta Y; Matsutani A; Oka Y
    Diabetologia; 1998 Jun; 41(6):649-53. PubMed ID: 9662045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes.
    Peiris H; Duffield MD; Fadista J; Jessup CF; Kashmir V; Genders AJ; McGee SL; Martin AM; Saiedi M; Morton N; Carter R; Cousin MA; Kokotos AC; Oskolkov N; Volkov P; Hough TA; Fisher EM; Tybulewicz VL; Busciglio J; Coskun PE; Becker A; Belichenko PV; Mobley WC; Ryan MT; Chan JY; Laybutt DR; Coates PT; Yang S; Ling C; Groop L; Pritchard MA; Keating DJ
    PLoS Genet; 2016 May; 12(5):e1006033. PubMed ID: 27195491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome analysis of islets from diabetes-resistant and diabetes-prone obese mice reveals novel gene regulatory networks involved in beta-cell compensation and failure.
    Chan JY; Bensellam M; Lin RCY; Liang C; Lee K; Jonas JC; Laybutt DR
    FASEB J; 2021 Jun; 35(6):e21608. PubMed ID: 33977593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoform-specific Roles of Prolyl Hydroxylases in the Regulation of Pancreatic β-Cell Function.
    Hoang M; Jentz E; Janssen SM; Nasteska D; Cuozzo F; Hodson DJ; Tupling AR; Fong GH; Joseph JW
    Endocrinology; 2022 Jan; 163(1):. PubMed ID: 34718519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of ATP-insensitive KATP channels in pancreatic beta-cells underlies a spectrum of diabetic phenotypes.
    Koster JC; Remedi MS; Masia R; Patton B; Tong A; Nichols CG
    Diabetes; 2006 Nov; 55(11):2957-64. PubMed ID: 17065331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.