BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31172029)

  • 21. ForceGen: atomic covalent bond value derivation for Gromacs.
    Nash A; Collier T; Birch HL; de Leeuw NH
    J Mol Model; 2017 Dec; 24(1):5. PubMed ID: 29214361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic-Resolution Transmission Electron Microscopic Movies for Study of Organic Molecules, Assemblies, and Reactions: The First 10 Years of Development.
    Nakamura E
    Acc Chem Res; 2017 Jun; 50(6):1281-1292. PubMed ID: 28481074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches.
    Mills JD; Ben-Nun M; Rollin K; Bromley MW; Li J; Hinde RJ; Winstead CL; Sheehy JA; Boatz JA; Langhoff PW
    J Phys Chem B; 2016 Aug; 120(33):8321-37. PubMed ID: 27232159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Derivation of class II force fields. VIII. Derivation of a general quantum mechanical force field for organic compounds.
    Ewig CS; Berry R; Dinur U; Hill JR; Hwang MJ; Li H; Liang C; Maple J; Peng Z; Stockfisch TP; Thacher TS; Yan L; Ni X; Hagler AT
    J Comput Chem; 2001 Nov; 22(15):1782-1800. PubMed ID: 12116411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide.
    Jaramillo-Botero A; Naserifar S; Goddard WA
    J Chem Theory Comput; 2014 Apr; 10(4):1426-39. PubMed ID: 26580361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning unifies the modeling of materials and molecules.
    Bartók AP; De S; Poelking C; Bernstein N; Kermode JR; Csányi G; Ceriotti M
    Sci Adv; 2017 Dec; 3(12):e1701816. PubMed ID: 29242828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Description of Potential Energy Surfaces of Molecules Using FFLUX Machine Learning Models.
    Hughes ZE; Thacker JCR; Wilson AL; Popelier PLA
    J Chem Theory Comput; 2019 Jan; 15(1):116-126. PubMed ID: 30507180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine Learning in Computational Surface Science and Catalysis: Case Studies on Water and Metal-Oxide Interfaces.
    Li X; Paier W; Paier J
    Front Chem; 2020; 8():601029. PubMed ID: 33425857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An extensible and systematic force field, ESFF, for molecular modeling of organic, inorganic, and organometallic systems.
    Shi S; Yan L; Yang Y; Fisher-Shaulsky J; Thacher T
    J Comput Chem; 2003 Jul; 24(9):1059-76. PubMed ID: 12759906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Singlet Oxygen Photophysics in Liquid Solvents: Converging on a Unified Picture.
    Bregnhøj M; Westberg M; Minaev BF; Ogilby PR
    Acc Chem Res; 2017 Aug; 50(8):1920-1927. PubMed ID: 28731691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QuickFF: A program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input.
    Vanduyfhuys L; Vandenbrande S; Verstraelen T; Schmid R; Waroquier M; Van Speybroeck V
    J Comput Chem; 2015 May; 36(13):1015-27. PubMed ID: 25740170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidating Hyperconjugation from Electronegativity to Predict Drug Conformational Energy in a High Throughput Manner.
    Liu Z; Pottel J; Shahamat M; Tomberg A; Labute P; Moitessier N
    J Chem Inf Model; 2016 Apr; 56(4):788-801. PubMed ID: 27028941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Getting the Right Answers for the Right Reasons: Toward Predictive Molecular Simulations of Water with Many-Body Potential Energy Functions.
    Paesani F
    Acc Chem Res; 2016 Sep; 49(9):1844-51. PubMed ID: 27548325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Universal machine learning for the response of atomistic systems to external fields.
    Zhang Y; Jiang B
    Nat Commun; 2023 Oct; 14(1):6424. PubMed ID: 37827998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of Reactivity and Regioselectivity for On-Surface Dehydrogenative Aryl-Aryl Bond Formation.
    Kocić N; Liu X; Chen S; Decurtins S; Krejčí O; Jelínek P; Repp J; Liu SX
    J Am Chem Soc; 2016 May; 138(17):5585-93. PubMed ID: 27059121
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.