These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 31172037)
1. Compositional Characterization of Expelled and Residual Oils in the Source Rocks from Oil Generation-Expulsion Thermal Simulation Experiments. Zhang Y; Wang Y; Ma W; Lu J; Liao Y; Li Z; Shi Q ACS Omega; 2019 May; 4(5):8239-8248. PubMed ID: 31172037 [TBL] [Abstract][Full Text] [Related]
2. Experimental Simulation of Hydrocarbon Expulsion in Semi-open Systems from Variable Organic Richness Source Rocks. Hou L; Huang H; Yang C; Ma W ACS Omega; 2021 Jun; 6(22):14664-14676. PubMed ID: 34124489 [TBL] [Abstract][Full Text] [Related]
3. Detailed characterization of polar compounds of residual oil in contaminated soil revealed by Fourier transform ion cyclotron resonance mass spectrometry. Wang J; Zhang X; Li G Chemosphere; 2011 Oct; 85(4):609-15. PubMed ID: 21777939 [TBL] [Abstract][Full Text] [Related]
4. A Study on the Applicability of Aromatic Parameters in the Maturity Evaluation of Lacustrine Source Rocks and Oils Based on Pyrolysis Simulation Experiments. Chen Z; Wen Z; Zhang C; He Y; Gao Y; Bai X; Wang X ACS Omega; 2023 Aug; 8(30):27674-27687. PubMed ID: 37546680 [TBL] [Abstract][Full Text] [Related]
5. Pyrolysis Temperature Effect on Compositions of Neutral Nitrogen and Acidic Species in Shale Oil Using Negative-Ion ESI FT-ICR MS. Cui D; Chang H; Zhang X; Pan S; Wang Q ACS Omega; 2020 Sep; 5(37):23940-23950. PubMed ID: 32984714 [TBL] [Abstract][Full Text] [Related]
6. Molecular Characterization of NSO Compounds and Paleoenvironment Implication for Saline Lacustrine Oil Sands by Positive-Ion Mass Spectrometry Coupled with Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. Ji H; Li S; Zhang H; Pang X; Zhou Y; Xiang L ACS Omega; 2021 Oct; 6(39):25680-25691. PubMed ID: 34632224 [TBL] [Abstract][Full Text] [Related]
7. A comparative study of the pyrolysis and hydrolysis conversion of tire. Wang L; Wang X; Yu J J Hazard Mater; 2024 Apr; 468():133724. PubMed ID: 38382336 [TBL] [Abstract][Full Text] [Related]
9. The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS. Islam A; Cho Y; Yim UH; Shim WJ; Kim YH; Kim S J Hazard Mater; 2013 Dec; 263 Pt 2():404-11. PubMed ID: 24231315 [TBL] [Abstract][Full Text] [Related]
10. Ultra-high performance supercritical fluid chromatography hyphenated to atmospheric pressure chemical ionization high resolution mass spectrometry for the characterization of fast pyrolysis bio-oils. Crepier J; Le Masle A; Charon N; Albrieux F; Duchene P; Heinisch S J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1086():38-46. PubMed ID: 29656082 [TBL] [Abstract][Full Text] [Related]
11. Molecular selectivity in the water flooding heavy oil process from porous rocks. Zhang B; Liu Z; Zhang H; Shi Q; Li Y; Xu C RSC Adv; 2022 Aug; 12(38):24839-24848. PubMed ID: 36128390 [TBL] [Abstract][Full Text] [Related]
12. Influence of solvent on the yield and chemical composition of liquid products of hydrothermal liquefaction of Arthrospira platensis as revealed by Fourier transform ion cyclotron resonance mass spectrometry. Vlaskin MS; Grigorenko AV; Kostyukevich YI; Nikolaev EN; Vladimirov GN; Chernova NI; Kiseleva SV; Popel OS; Zhuk AZ Eur J Mass Spectrom (Chichester); 2018 Oct; 24(5):363-374. PubMed ID: 29665728 [TBL] [Abstract][Full Text] [Related]
13. Hydrocarbon generation potential in jurassic source rocks from hydrous pyrolysis experiments under ultradeep conditions. Cao Z; Liang M; Zhang X; Su L Sci Rep; 2024 Sep; 14(1):22360. PubMed ID: 39333338 [TBL] [Abstract][Full Text] [Related]
14. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry. Stanford LA; Kim S; Klein GC; Smith DF; Rodgers RP; Marshall AG Environ Sci Technol; 2007 Apr; 41(8):2696-702. PubMed ID: 17533826 [TBL] [Abstract][Full Text] [Related]
15. Estimating the intermediate precision in petroleum analysis by (±)electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Folli GS; Souza LM; Araújo BQ; Romão W; Filgueiras PR Rapid Commun Mass Spectrom; 2020 Sep; 34 Suppl 3():e8861. PubMed ID: 32531135 [TBL] [Abstract][Full Text] [Related]
16. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils. Hertzog J; Carré V; Le Brech Y; Mackay CL; Dufour A; Mašek O; Aubriet F Anal Chim Acta; 2017 May; 969():26-34. PubMed ID: 28411627 [TBL] [Abstract][Full Text] [Related]
17. Detection of residual oil-sand-derived organic material in developing soils of reclamation sites by ultra-high-resolution mass spectrometry. Noah M; Poetz S; Vieth-Hillebrand A; Wilkes H Environ Sci Technol; 2015 Jun; 49(11):6466-73. PubMed ID: 25961672 [TBL] [Abstract][Full Text] [Related]
18. The role of water in the laboratory thermal advancement of immature type I kerogen from the Cretaceous Qingshankou Formation in China. Safaei-Farouji M; Gentzis T; Liu B; Ma Z; Wang L; Xu Y; Ostadhassan M Sci Rep; 2023 Jul; 13(1):10815. PubMed ID: 37402993 [TBL] [Abstract][Full Text] [Related]
19. The fingerprint of essential bio-oils by Fourier transform ion cyclotron resonance mass spectrometry. Ramírez CX; Palacio Lozano DC; Jones HE; Cabanzo Hernández R; Barrow MP; Mejia-Ospino E Analyst; 2020 May; 145(9):3414-3423. PubMed ID: 32254686 [TBL] [Abstract][Full Text] [Related]
20. Tracking alterations of alkyl side chains of N Su S; Dong H; Yu G; Hou D; Shi Q; Banat IM; Wang Z; Gu Y; Zhang F; She Y Rapid Commun Mass Spectrom; 2019 May; 33(9):875-882. PubMed ID: 30821059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]