These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions. Chen Y; Sun W; Kang L; Wang Y; Zhang M; Zhang H; Hu P Analyst; 2019 Jul; 144(14):4233-4240. PubMed ID: 31210202 [TBL] [Abstract][Full Text] [Related]
8. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer. Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188 [TBL] [Abstract][Full Text] [Related]
9. Carboplatin sensitivity in epithelial ovarian cancer cell lines: The impact of model systems. Patra B; Lateef MA; Brodeur MN; Fleury H; Carmona E; Péant B; Provencher D; Mes-Masson AM; Gervais T PLoS One; 2020; 15(12):e0244549. PubMed ID: 33382759 [TBL] [Abstract][Full Text] [Related]
10. Emulsion technologies for multicellular tumour spheroid radiation assays. McMillan KS; McCluskey AG; Sorensen A; Boyd M; Zagnoni M Analyst; 2016 Jan; 141(1):100-10. PubMed ID: 26456100 [TBL] [Abstract][Full Text] [Related]
11. High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures. Bourn MD; Batchelor DVB; Ingram N; McLaughlan JR; Coletta PL; Evans SD; Peyman SA J Control Release; 2020 Oct; 326():13-24. PubMed ID: 32562855 [TBL] [Abstract][Full Text] [Related]
12. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Patra B; Peng CC; Liao WH; Lee CH; Tung YC Sci Rep; 2016 Feb; 6():21061. PubMed ID: 26877244 [TBL] [Abstract][Full Text] [Related]
13. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery. Meier-Hubberten JC; Sanderson MP Methods Mol Biol; 2019; 1953():163-179. PubMed ID: 30912022 [TBL] [Abstract][Full Text] [Related]
14. Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids. McMillan KS; Boyd M; Zagnoni M Lab Chip; 2016 Sep; 16(18):3548-57. PubMed ID: 27477673 [TBL] [Abstract][Full Text] [Related]
15. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator. Lee Y; Chen Z; Lim W; Cho H; Park S Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205 [TBL] [Abstract][Full Text] [Related]
16. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics. Chiang CC; Anne R; Chawla P; Shaw RM; He S; Rock EC; Zhou M; Cheng J; Gong YN; Chen YC Lab Chip; 2024 Jun; 24(12):3169-3182. PubMed ID: 38804084 [TBL] [Abstract][Full Text] [Related]
17. A multicellular spheroid formation and extraction chip using removable cell trapping barriers. Jin HJ; Cho YH; Gu JM; Kim J; Oh YS Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070 [TBL] [Abstract][Full Text] [Related]
18. Establishment and characterization of an in vitro 3D ovarian cancer model for drug screening assays. Tofani LB; Abriata JP; Luiz MT; Marchetti JM; Swiech K Biotechnol Prog; 2020 Nov; 36(6):e3034. PubMed ID: 32519461 [TBL] [Abstract][Full Text] [Related]
19. Uniform sized cancer spheroids production using hydrogel-based droplet microfluidics: a review. Kim S; Lam PY; Jayaraman A; Han A Biomed Microdevices; 2024 May; 26(2):26. PubMed ID: 38806765 [TBL] [Abstract][Full Text] [Related]
20. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays. Raghavan S; Ward MR; Rowley KR; Wold RM; Takayama S; Buckanovich RJ; Mehta G Gynecol Oncol; 2015 Jul; 138(1):181-9. PubMed ID: 25913133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]