BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31172304)

  • 1. Nano-Silver Ink of High Conductivity and Low Sintering Temperature for Paper Electronics.
    Mo L; Guo Z; Wang Z; Yang L; Fang Y; Xin Z; Li X; Chen Y; Cao M; Zhang Q; Li L
    Nanoscale Res Lett; 2019 Jun; 14(1):197. PubMed ID: 31172304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.
    Ding J; Liu J; Tian Q; Wu Z; Yao W; Dai Z; Liu L; Wu W
    Nanoscale Res Lett; 2016 Dec; 11(1):412. PubMed ID: 27644238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics.
    Mo L; Guo Z; Yang L; Zhang Q; Fang Y; Xin Z; Chen Z; Hu K; Han L; Li L
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31036787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics.
    Wang F; Mao P; He H
    Sci Rep; 2016 Feb; 6():21398. PubMed ID: 26883558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductivity enhancement of Ag nanowire ink by decorating
    Feng J; Xing B; Xu J
    Nanotechnology; 2024 Feb; 35(17):. PubMed ID: 38262038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Investigation of Novel, Controlled Low-Temperature Sintering Processes for Inkjet Printed Silver Nanoparticle Ink.
    Chen Z; Gengenbach U; Koker L; Huang L; Mach TP; Reichert KM; Thelen R; Ungerer M
    Small; 2024 May; 20(21):e2306865. PubMed ID: 38126669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano oxide intermediate layer assisted room temperature sintering of ink-jet printed silver nanoparticles pattern.
    Liu Z; Ji H; Yuan Q; Ma X; Feng H; Zhao W; Wei J; Xu C; Li M
    Nanotechnology; 2019 Dec; 30(49):495302. PubMed ID: 31480026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness of Oxygen during Sintering of Silver Thin Films Derived by Nanoparticle Ink.
    Feng F; Hong H; Gao X; Ren T; Ma Y; Feng P
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films.
    Stewart IE; Kim MJ; Wiley BJ
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1870-1876. PubMed ID: 27981831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver Shell Thickness-Dependent Conductivity of Coatings Based on Ni@Ag Core@shell Nanoparticles.
    Pajor-Świerzy A; Kozak K; Duraczyńska D; Wiertel-Pochopień A; Zawała J; Szczepanowicz K
    Nanotechnol Sci Appl; 2023; 16():73-84. PubMed ID: 38161487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size.
    Mavuri A; Mayes AG; Alexander MS
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Nanocellulose to Produce Water-Based Conductive Inks with Ag NPs for Printed Electronics.
    Martinez-Crespiera S; Pepió-Tàrrega B; González-Gil RM; Cecilia-Morillo F; Palmer J; Escobar AM; Beneitez-Álvarez S; Abitbol T; Fall A; Aulin C; Nevo Y; Beni V; Tolin E; Bahr A
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere-nanoplate hybrid ink at a low temperature of 100 °C.
    Han YD; Zhang SM; Jing HY; Wei J; Bu FH; Zhao L; Lv XQ; Xu LY
    Nanotechnology; 2018 Apr; 29(13):135301. PubMed ID: 29432209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface Modified Flexible Printed Conductive Films via Ag
    Meng Y; Ma T; Pavinatto FJ; MacKenzie JD
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9190-9196. PubMed ID: 30742404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Oxalic Acid Treatment on Conductive Coatings Formed by Ni@Ag Core-Shell Nanoparticles.
    Pajor-Świerzy A; Pawłowski R; Sobik P; Kamyshny A; Szczepanowicz K
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Preparation of Ag Nanoparticle and Ink Used for Inkjet Printing of Paper Based Conductive Patterns.
    Cao L; Bai X; Lin Z; Zhang P; Deng S; Du X; Li W
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28846637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The exothermic reaction route of a self-heatable conductive ink for rapid processable printed electronics.
    Shin DY; Han JW; Chun S
    Nanoscale; 2014 Jan; 6(1):630-7. PubMed ID: 24253416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sintering Inhibition of Silver Nanoparticle Films via AgCl Nanocrystal Formation.
    Öhlund T; Hummelgård M; Olin H
    Nanomaterials (Basel); 2017 Aug; 7(8):. PubMed ID: 28817099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polydispersity vs. Monodispersity. How the Properties of Ni-Ag Core-Shell Nanoparticles Affect the Conductivity of Ink Coatings.
    Pajor-Świerzy A; Staśko D; Pawłowski R; Mordarski G; Kamyshny A; Szczepanowicz K
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.