These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31172431)

  • 1. A review of bismuth-based sorptive materials for the removal of major contaminants from drinking water.
    Ranjan M; Singh PK; Srivastav AL
    Environ Sci Pollut Res Int; 2020 May; 27(15):17492-17504. PubMed ID: 31172431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a new adsorbent for fluoride removal from aqueous solutions.
    Srivastav AL; Singh PK; Srivastava V; Sharma YC
    J Hazard Mater; 2013 Dec; 263 Pt 2():342-52. PubMed ID: 23711596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical approach on reuse of drinking water treatment plant residuals for fluoride removal.
    Shakya AK; Bhande R; Ghosh PK
    Environ Technol; 2020 Sep; 41(22):2907-2919. PubMed ID: 30888261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on bismuth-based materials for the removal of organic and inorganic pollutants.
    Perumal S; Lee W; Atchudan R
    Chemosphere; 2022 Nov; 306():135521. PubMed ID: 35780986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorbent synthesis of polypyrrole/TiO(2) for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism.
    Chen J; Shu C; Wang N; Feng J; Ma H; Yan W
    J Colloid Interface Sci; 2017 Jun; 495():44-52. PubMed ID: 28189108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The removal of fluoride from aqueous solution by a lateritic soil adsorption: Kinetic and equilibrium studies.
    Iriel A; Bruneel SP; Schenone N; Cirelli AF
    Ecotoxicol Environ Saf; 2018 Mar; 149():166-172. PubMed ID: 29169093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of biomass-based materials to remove fluoride from wastewater: A review.
    Huang L; Luo Z; Huang X; Wang Y; Yan J; Liu W; Guo Y; Babu Arulmani SR; Shao M; Zhang H
    Chemosphere; 2022 Aug; 301():134679. PubMed ID: 35469899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review on heterogeneous oxidation and adsorption for arsenic removal from drinking water.
    Liu R; Qu J
    J Environ Sci (China); 2021 Dec; 110():178-188. PubMed ID: 34593189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrous CeO
    Chigondo M; Kamdem Paumo H; Bhaumik M; Pillay K; Maity A
    J Colloid Interface Sci; 2018 Dec; 532():500-516. PubMed ID: 30103133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of arsenic and fluoride bearing spent adsorbent in clay bricks: Preparation, characterization and leaching studies.
    Rathore VK; Mondal P
    J Environ Manage; 2017 Sep; 200():160-169. PubMed ID: 28577453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino Acid Complexes of Zirconium in a Carbon Composite for the Efficient Removal of Fluoride Ions from Water.
    González-Aguiñaga E; Pérez-Tavares JA; Patakfalvi R; Szabó T; Illés E; Pérez Ladrón de Guevara H; Cardoso-Avila PE; Castañeda-Contreras J; Saavedra Arroyo QE
    Int J Environ Res Public Health; 2022 Mar; 19(6):. PubMed ID: 35329329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water.
    Du J; Sabatini DA; Butler EC
    Chemosphere; 2014 Apr; 101():21-7. PubMed ID: 24373227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of fluoride ions from drinking water and fluoride solutions by aluminum modified iron oxides in a column system.
    García-Sánchez JJ; Solache-Ríos M; Martínez-Miranda V; Solís Morelos C
    J Colloid Interface Sci; 2013 Oct; 407():410-5. PubMed ID: 23859818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review.
    Haldar D; Duarah P; Purkait MK
    Chemosphere; 2020 Jul; 251():126388. PubMed ID: 32443223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GO-CeO₂ nanohybrid for ultra-rapid fluoride removal from drinking water.
    Rashid US; Das TK; Sakthivel TS; Seal S; Bezbaruah AN
    Sci Total Environ; 2021 Nov; 793():148547. PubMed ID: 34328953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic nanomaterials as an effective absorbent material for removal of fluoride concentration in water: a review.
    Panhwar S; Keerio HA; Khokhar NH; Muqeet M; Ali Z; Bilal M; Ul Rehman A
    J Water Health; 2024 Jan; 22(1):123-137. PubMed ID: 38295076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of hydrocalumite for removal of fluoride from aqueous solutions.
    Almeida RD; Campos JC; Souza MMVM
    Environ Sci Pollut Res Int; 2021 May; 28(18):22439-22457. PubMed ID: 33415642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption equilibrium and kinetics of fluoride on sol-gel-derived activated alumina adsorbents.
    Camacho LM; Torres A; Saha D; Deng S
    J Colloid Interface Sci; 2010 Sep; 349(1):307-13. PubMed ID: 20566204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of conventional and emerging low-cost adsorbents as sustainable materials for removal of contaminants from water.
    Eniola JO; Sizirici B; Fseha Y; Shaheen JF; Aboulella AM
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):88245-88271. PubMed ID: 37440129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution.
    Mandal S; Mayadevi S
    Chemosphere; 2008 Jun; 72(6):995-8. PubMed ID: 18474392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.