These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31172571)

  • 1. NBO 7.0: New vistas in localized and delocalized chemical bonding theory.
    Glendening ED; Landis CR; Weinhold F
    J Comput Chem; 2019 Sep; 40(25):2234-2241. PubMed ID: 31172571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient optimization of natural resonance theory weightings and bond orders by gram-based convex programming.
    Glendening ED; Wright SJ; Weinhold F
    J Comput Chem; 2019 Sep; 40(23):2028-2035. PubMed ID: 31077408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural Bond Critical Point analysis: quantitative relationships between natural bond orbital-based and QTAIM-based topological descriptors of chemical bonding.
    Weinhold F
    J Comput Chem; 2012 Nov; 33(30):2440-9. PubMed ID: 22837020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To Be or Not to Be: Demystifying the 2nd-Quantized Picture of Complex Electronic Configuration Patterns in Chemistry with Natural Poly-Electron Population Analysis.
    Kyriakidou K; Karafiloglou P; Glendening E; Weinhold F
    J Comput Chem; 2019 Jun; 40(15):1509-1520. PubMed ID: 30811040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NBO/NRT Two-State Theory of Bond-Shift Spectral Excitation.
    Jiao Y; Weinhold F
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32899858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical bonding in view of electron charge density and kinetic energy density descriptors.
    Jacobsen H
    J Comput Chem; 2009 May; 30(7):1093-102. PubMed ID: 19090572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bay-type H···H "bonding" in cis-2-butene and related species: QTAIM versus NBO description.
    Weinhold F; Schleyer Pv; McKee WC
    J Comput Chem; 2014 Jul; 35(20):1499-508. PubMed ID: 24920537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NBO 6.0: natural bond orbital analysis program.
    Glendening ED; Landis CR; Weinhold F
    J Comput Chem; 2013 Jun; 34(16):1429-37. PubMed ID: 23483590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What Is the Nature of Supramolecular Bonding? Comprehensive NBO/NRT Picture of Halogen and Pnicogen Bonding in RPH
    Jiao Y; Weinhold F
    Molecules; 2019 May; 24(11):. PubMed ID: 31159347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoelectron spectroscopy and density functional theory studies of (FeS)
    Yin S; Bernstein ER
    Phys Chem Chem Phys; 2017 Dec; 20(1):367-382. PubMed ID: 29210391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Bond Orbital Theory of Pseudo-Jahn-Teller Effects.
    Nori-Shargh D; Weinhold F
    J Phys Chem A; 2018 May; 122(18):4490-4498. PubMed ID: 29672053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives.
    Weinhold F
    J Comput Chem; 2012 Nov; 33(30):2363-79. PubMed ID: 22837029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the Bonding Mechanism and the Bonding Covalency in Noble Gas-Noble Metal Halides: An NBO/NRT Investigation.
    Zhang G; Fu L; Li H; Fan X; Chen D
    J Phys Chem A; 2017 Jul; 121(27):5183-5189. PubMed ID: 28631924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Prediction Models for the Reactivity of Organic Compounds with Ozone in Aqueous Solution by Quantum Chemical Calculations: The Role of Delocalized and Localized Molecular Orbitals.
    Lee M; Zimmermann-Steffens SG; Arey JS; Fenner K; von Gunten U
    Environ Sci Technol; 2015 Aug; 49(16):9925-35. PubMed ID: 26121114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalization of Natural Bond Orbital Analysis to Periodic Systems: Applications to Solids and Surfaces via Plane-Wave Density Functional Theory.
    Dunnington BD; Schmidt JR
    J Chem Theory Comput; 2012 Jun; 8(6):1902-11. PubMed ID: 26593824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance bonding in XNgY (X = F, Cl, Br, I; Ng = Kr or Xe; Y = CN or NC) molecules: an NBO/NRT investigation.
    Song J; Su Y; Jia Y; Chen L; Zhang G
    J Mol Model; 2018 May; 24(6):129. PubMed ID: 29736860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Variety of Bond Analysis Methods, One Answer? An Investigation of the Element-Oxygen Bond of Hydroxides H
    Fugel M; Beckmann J; Jayatilaka D; Gibbs GV; Grabowsky S
    Chemistry; 2018 Apr; 24(23):6248-6261. PubMed ID: 29465756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A detailed study of the electronic structure of Fe3 cluster and associative adsorption of N2 to this cluster: a natural bond orbital analysis.
    Pakiari AH; Mousavi M
    J Phys Chem A; 2010 Sep; 114(37):10209-16. PubMed ID: 20738138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Natural Bond Orbitals: Efficient Semilocalized Orbitals for Computing and Visualizing Reactive Chemical Processes.
    Glendening ED; Weinhold F
    J Chem Theory Comput; 2019 Feb; 15(2):916-921. PubMed ID: 30612430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.