These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31172662)

  • 1. Label-Free Quantitative Proteomics of Enriched Nuclei from Sugarcane (Saccharum ssp) Stems in Response to Drought Stress.
    Salvato F; Loziuk P; Kiyota E; Daneluzzi GS; Araújo P; Muddiman DC; Mazzafera P
    Proteomics; 2019 Jul; 19(14):e1900004. PubMed ID: 31172662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erianthus arundinaceus HSP70 (EaHSP70) Acts as a Key Regulator in the Formation of Anisotropic Interdigitation in Sugarcane (Saccharum spp. hybrid) in Response to Drought Stress.
    Augustine SM; Cherian AV; Syamaladevi DP; Subramonian N
    Plant Cell Physiol; 2015 Dec; 56(12):2368-80. PubMed ID: 26423958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SoNAP gene from sugarcane (Saccharum officinarum) encodes a senescence-associated NAC transcription factor involved in response to osmotic and salt stress.
    Carrillo-Bermejo EA; Gamboa-Tuz SD; Pereira-Santana A; Keb-Llanes MA; Castaño E; Figueroa-Yañez LJ; Rodriguez-Zapata LC
    J Plant Res; 2020 Nov; 133(6):897-909. PubMed ID: 33094397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive transcriptome analysis reveals genes in response to water deficit in the leaves of Saccharum narenga (Nees ex Steud.) hack.
    Liu X; Zhang R; Ou H; Gui Y; Wei J; Zhou H; Tan H; Li Y
    BMC Plant Biol; 2018 Oct; 18(1):250. PubMed ID: 30342477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.).
    Ferreira TH; Gentile A; Vilela RD; Costa GG; Dias LI; Endres L; Menossi M
    PLoS One; 2012; 7(10):e46703. PubMed ID: 23071617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrative overview of the molecular and physiological responses of sugarcane under drought conditions.
    Vital CE; Giordano A; de Almeida Soares E; Rhys Williams TC; Mesquita RO; Vidigal PMP; de Santana Lopes A; Pacheco TG; Rogalski M; de Oliveira Ramos HJ; Loureiro ME
    Plant Mol Biol; 2017 Aug; 94(6):577-594. PubMed ID: 28409321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of common bean stem under drought stress using in-gel stable isotope labeling.
    Zadražnik T; Egge-Jacobsen W; Meglič V; Šuštar-Vozlič J
    J Plant Physiol; 2017 Feb; 209():42-50. PubMed ID: 28013170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Analysis of Transcriptome and Metabolome Reveals the Regulation of Chitooligosaccharide on Drought Tolerance in Sugarcane (
    Yang S; Chu N; Zhou H; Li J; Feng N; Su J; Deng Z; Shen X; Zheng D
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease.
    Wu Y; Mirzaei M; Pascovici D; Chick JM; Atwell BJ; Haynes PA
    J Proteomics; 2016 Jun; 143():73-82. PubMed ID: 27195813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Proteomic Analysis of Brassica napus in Response to Drought Stress.
    Koh J; Chen G; Yoo MJ; Zhu N; Dufresne D; Erickson JE; Shao H; Chen S
    J Proteome Res; 2015 Aug; 14(8):3068-81. PubMed ID: 26086353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H3K27 demethylase SsJMJ4 negatively regulates drought-stress responses in sugarcane.
    Yu G; Chen D; Ye M; Wu X; Zhu Z; Shen Y; Mehareb EM; Esh A; Raza G; Wang K; Wang Q; Jin JB
    J Exp Bot; 2024 May; 75(10):3040-3053. PubMed ID: 38310636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress.
    Xie H; Yang DH; Yao H; Bai G; Zhang YH; Xiao BG
    Biochem Biophys Res Commun; 2016 Jan; 469(3):768-75. PubMed ID: 26692494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of an evolutionarily conserved drought-responsive sugarcane gene enhances salinity and drought resilience.
    Begcy K; Mariano ED; Lembke CG; Zingaretti SM; Souza GM; Araújo P; Menossi M
    Ann Bot; 2019 Oct; 124(4):691-700. PubMed ID: 31125059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and proteomic analyses of the drought stress response in Amygdalus Mira (Koehne) Yü et Lu roots.
    Cao Y; Luo Q; Tian Y; Meng F
    BMC Plant Biol; 2017 Feb; 17(1):53. PubMed ID: 28241796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Sugarcane
    Li X; Liu Z; Zhao H; Deng X; Su Y; Li R; Chen B
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotype-dependent regulation of drought-responsive genes in tolerant and sensitive sugarcane cultivars.
    da Silva MD; de Oliveira Silva RL; Ferreira Neto JRC; Benko-Iseppon AM; Kido EA
    Gene; 2017 Oct; 633():17-27. PubMed ID: 28855118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physio-biochemical assessment and expression analysis of genes associated with drought tolerance in sugarcane (Saccharum spp. hybrids) exposed to GA
    Tripathi P; Chandra A; Prakash J
    Plant Biol (Stuttg); 2019 Jan; 21(1):45-53. PubMed ID: 30255565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes.
    Li N; Zhang S; Liang Y; Qi Y; Chen J; Zhu W; Zhang L
    J Proteomics; 2018 Feb; 172():122-142. PubMed ID: 28982538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz).
    Shan Z; Luo X; Wei M; Huang T; Khan A; Zhu Y
    Sci Rep; 2018 Dec; 8(1):17982. PubMed ID: 30568257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of ScMYBAS1 alternative splicing transcripts differentially impacts biomass accumulation and drought tolerance in rice transgenic plants.
    Fávero Peixoto-Junior R; Mara de Andrade L; Dos Santos Brito M; Macedo Nobile P; Palma Boer Martins A; Domingues Carlin S; Vasconcelos Ribeiro R; de Souza Goldman MH; Nebó Carlos de Oliveira JF; Vargas de Oliveira Figueira A; Creste S
    PLoS One; 2018; 13(12):e0207534. PubMed ID: 30517137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.