BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31172727)

  • 1. Three-dimensional quantitative photoacoustic tomography using an adjoint radiance Monte Carlo model and gradient descent.
    Buchmann J; Kaplan B; Powell S; Prohaska S; Laufer J
    J Biomed Opt; 2019 Jun; 24(6):1-13. PubMed ID: 31172727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative photoacoustic tomography using forward and adjoint Monte Carlo models of radiance.
    Hochuli R; Powell S; Arridge S; Cox B
    J Biomed Opt; 2016 Dec; 21(12):126004. PubMed ID: 27918801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative photoacoustic tomography with light fluence compensation based on radiance Monte Carlo model.
    Zheng S; Yingsa H; Meichen S; Qi M
    Phys Med Biol; 2023 Mar; 68(6):. PubMed ID: 36821863
    [No Abstract]   [Full Text] [Related]  

  • 4. Quantitative PA tomography of high resolution 3-D images: Experimental validation in a tissue phantom.
    Buchmann J; Kaplan B; Powell S; Prohaska S; Laufer J
    Photoacoustics; 2020 Mar; 17():100157. PubMed ID: 31956487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating relative chromophore concentrations from multiwavelength photoacoustic images using independent component analysis.
    An L; Cox BT
    J Biomed Opt; 2018 Jul; 23(7):1-10. PubMed ID: 29992796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable blood oxygenation in the vascular anatomy of a semi-anthropomorphic photoacoustic breast phantom.
    Dantuma M; Kruitwagen S; Ortega-Julia J; Pompe van Meerdervoort RP; Manohar S
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33728828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography.
    Poudel J; Lou Y; Anastasio MA
    Phys Med Biol; 2019 Jul; 64(14):14TR01. PubMed ID: 31067527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Photoacoustic Tomography Using Iteratively Refined Wavefield Reconstruction Inversion: A Simulation Study.
    Ranjbaran SM; Aghamiry HS; Gholami A; Operto S; Avanaki K
    IEEE Trans Med Imaging; 2024 Feb; 43(2):874-885. PubMed ID: 37847617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three dimensional photoacoustic tomography in Bayesian framework.
    Tick J; Pulkkinen A; Lucka F; Ellwood R; Cox BT; Kaipio JP; Arridge SR; Tarvainen T
    J Acoust Soc Am; 2018 Oct; 144(4):2061. PubMed ID: 30404490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography.
    Hauptmann A; Lucka F; Betcke M; Huynh N; Adler J; Cox B; Beard P; Ourselin S; Arridge S
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1382-1393. PubMed ID: 29870367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating chromophore distributions from multiwavelength photoacoustic images.
    Cox BT; Arridge SR; Beard PC
    J Opt Soc Am A Opt Image Sci Vis; 2009 Feb; 26(2):443-55. PubMed ID: 19183699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of image noise contributions in proton computed tomography and comparison to measurements.
    Dickmann J; Wesp P; Rädler M; Rit S; Pankuch M; Johnson RP; Bashkirov V; Schulte RW; Parodi K; Landry G; Dedes G
    Phys Med Biol; 2019 Jul; 64(14):145016. PubMed ID: 31125986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Automatic Unmixing Approach to Detect Tissue Chromophores from Multispectral Photoacoustic Imaging.
    Grasso V; Holthof J; Jose J
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bayesian Approach to Eigenspectra Optoacoustic Tomography.
    Olefir I; Tzoumas S; Yang H; Ntziachristos V
    IEEE Trans Med Imaging; 2018 Sep; 37(9):2070-2079. PubMed ID: 29993865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous reconstruction of absorption, scattering and anisotropy factor distributions in quantitative photoacoustic tomography.
    Asllanaj F; Addoum A
    Biomed Phys Eng Express; 2020 May; 6(4):045010. PubMed ID: 33444271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative spectroscopic photoacoustic imaging: a review.
    Cox B; Laufer JG; Arridge SR; Beard PC
    J Biomed Opt; 2012 Jun; 17(6):061202. PubMed ID: 22734732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition.
    Paltauf G; Torke PR; Nuster R
    J Biomed Opt; 2018 Sep; 23(12):1-11. PubMed ID: 30251482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scatter Correction with Combined Single-Scatter Simulation and Monte Carlo Simulation Scaling Improved the Visual Artifacts and Quantification in 3-Dimensional Brain PET/CT Imaging with
    Magota K; Shiga T; Asano Y; Shinyama D; Ye J; Perkins AE; Maniawski PJ; Toyonaga T; Kobayashi K; Hirata K; Katoh C; Hattori N; Tamaki N
    J Nucl Med; 2017 Dec; 58(12):2020-2025. PubMed ID: 28646012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models.
    Macdonald C; Arridge S; Powell S
    J Biomed Opt; 2020 Aug; 25(8):. PubMed ID: 32798354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals.
    Xia J; Danielli A; Liu Y; Wang L; Maslov K; Wang LV
    Opt Lett; 2013 Aug; 38(15):2800-3. PubMed ID: 23903146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.