These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31172786)

  • 21. Local pressure changes in lipid bilayers due to adsorption of melittin and magainin-h2 antimicrobial peptides: results from computer simulations.
    Goliaei A; Santo KP; Berkowitz ML
    J Phys Chem B; 2014 Nov; 118(44):12673-9. PubMed ID: 25299589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insight into the interactions, residue snorkeling, and membrane disordering potency of a single antimicrobial peptide into different lipid bilayers.
    Jafari M; Mehrnejad F; Doustdar F
    PLoS One; 2017; 12(11):e0187216. PubMed ID: 29125878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of antimicrobial peptide revealed by simulations: translocation, pore formation, membrane corrugation and euler buckling.
    Chen L; Jia N; Gao L; Fang W; Golubovic L
    Int J Mol Sci; 2013 Apr; 14(4):7932-58. PubMed ID: 23579956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular-dynamics simulations.
    Shepherd CM; Vogel HJ; Tieleman DP
    Biochem J; 2003 Feb; 370(Pt 1):233-43. PubMed ID: 12423203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanism of Peptide-induced pores in membranes.
    Huang HW; Chen FY; Lee MT
    Phys Rev Lett; 2004 May; 92(19):198304. PubMed ID: 15169456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics simulations of indolicidin association with model lipid bilayers.
    Hsu JC; Yip CM
    Biophys J; 2007 Jun; 92(12):L100-2. PubMed ID: 17416617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case.
    Farrotti A; Bocchinfuso G; Palleschi A; Rosato N; Salnikov ES; Voievoda N; Bechinger B; Stella L
    Biochim Biophys Acta; 2015 Feb; 1848(2):581-92. PubMed ID: 25445672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orientation of a beta-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR.
    Tang M; Waring AJ; Lehrer RI; Hong M
    Biophys J; 2006 May; 90(10):3616-24. PubMed ID: 16500957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer.
    Rai DK; Qian S
    Sci Rep; 2017 Jun; 7(1):3719. PubMed ID: 28623332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of phosphatidylcholine bilayer thickness and molecular order on the binding of the antimicrobial peptide maculatin 1.1.
    Lee TH; Sani MA; Overall S; Separovic F; Aguilar MI
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):300-309. PubMed ID: 29030245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical basis for membrane-charge selectivity of cationic antimicrobial peptides.
    Taheri-Araghi S; Ha BY
    Phys Rev Lett; 2007 Apr; 98(16):168101. PubMed ID: 17501466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative molecular dynamics simulation studies of protegrin-1 monomer and dimer in two different lipid bilayers.
    Rui H; Lee J; Im W
    Biophys J; 2009 Aug; 97(3):787-95. PubMed ID: 19651037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of Piscidin-1 with zwitterionic versus anionic membranes: a comparative molecular dynamics study.
    Rahmanpour A; Ghahremanpour MM; Mehrnejad F; Moghaddam ME
    J Biomol Struct Dyn; 2013 Dec; 31(12):1393-403. PubMed ID: 23140320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of Antimicrobial Lipopeptides with Bacterial Lipid Bilayers.
    Shahane G; Ding W; Palaiokostas M; Azevedo HS; Orsi M
    J Membr Biol; 2019 Oct; 252(4-5):317-329. PubMed ID: 31098677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of arenicin-1 microdomains in bilayers and their specific lipid interaction revealed by Z-scan FCS.
    Macháň R; Hof M; Chernovets T; Zhmak MN; Ovchinnikova TV; Sýkora J
    Anal Bioanal Chem; 2011 Apr; 399(10):3547-54. PubMed ID: 21293959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy.
    Mani R; Waring AJ; Hong M
    Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dynamics simulation studies of lipid bilayer systems.
    Pasenkiewicz-Gierula M; Murzyn K; Róg T; Czaplewski C
    Acta Biochim Pol; 2000; 47(3):601-11. PubMed ID: 11310963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insight into the Mechanism of Action and Peptide-Membrane Interactions of Aib-Rich Peptides: Multitechnique Experimental and Theoretical Analysis.
    Lizio MG; Campana M; De Poli M; Jefferies DF; Cullen W; Andrushchenko V; Chmel NP; Bouř P; Khalid S; Clayden J; Blanch E; Rodger A; Webb SJ
    Chembiochem; 2021 May; 22(9):1656-1667. PubMed ID: 33411956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural Analysis and Design of Chionodracine-Derived Peptides Using Circular Dichroism and Molecular Dynamics Simulations.
    Borocci S; Della Pelle G; Ceccacci F; Olivieri C; Buonocore F; Porcelli F
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32092980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical properties that influence antimicrobial peptide activity in lipid membranes.
    Marín-Medina N; Ramírez DA; Trier S; Leidy C
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10251-10263. PubMed ID: 27837316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.