These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31172786)
41. Membrane translocation mechanism of the antimicrobial peptide buforin 2. Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374 [TBL] [Abstract][Full Text] [Related]
42. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Hallock KJ; Lee DK; Ramamoorthy A Biophys J; 2003 May; 84(5):3052-60. PubMed ID: 12719236 [TBL] [Abstract][Full Text] [Related]
43. Temperature-dependent transmembrane insertion of the amphiphilic peptide PGLa in lipid bilayers observed by solid state 19F NMR spectroscopy. Afonin S; Grage SL; Ieronimo M; Wadhwani P; Ulrich AS J Am Chem Soc; 2008 Dec; 130(49):16512-4. PubMed ID: 19049452 [No Abstract] [Full Text] [Related]
44. Molecular dynamics studies of the antimicrobial peptides piscidin 1 and its mutants with a DOPC lipid bilayer. Yuan T; Zhang X; Hu Z; Wang F; Lei M Biopolymers; 2012 Dec; 97(12):998-1009. PubMed ID: 22987590 [TBL] [Abstract][Full Text] [Related]
45. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy. Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166 [TBL] [Abstract][Full Text] [Related]
46. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687 [TBL] [Abstract][Full Text] [Related]
47. Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. Orioni B; Bocchinfuso G; Kim JY; Palleschi A; Grande G; Bobone S; Park Y; Kim JI; Hahm KS; Stella L Biochim Biophys Acta; 2009 Jul; 1788(7):1523-33. PubMed ID: 19397893 [TBL] [Abstract][Full Text] [Related]
48. Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Mani R; Cady SD; Tang M; Waring AJ; Lehrer RI; Hong M Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16242-7. PubMed ID: 17060626 [TBL] [Abstract][Full Text] [Related]
49. A differential scanning calorimetry study of the effects and interactions of antimicrobial peptide LS3 on phosphatidylethanolamine bilayers. Sa'adedin F; Bradshaw JP Protein Pept Lett; 2010 Nov; 17(11):1345-50. PubMed ID: 20673229 [TBL] [Abstract][Full Text] [Related]
52. Pore formation and the key factors in antibacterial activity of aurein 1.2 and LLAA inside lipid bilayers, a molecular dynamics study. Cheraghi N; Hosseini M; Mohammadinejad S Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):347-356. PubMed ID: 29030244 [TBL] [Abstract][Full Text] [Related]
53. Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association. Rice A; Wereszczynski J Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1941-1950. PubMed ID: 28583830 [TBL] [Abstract][Full Text] [Related]
54. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Manzini MC; Perez KR; Riske KA; Bozelli JC; Santos TL; da Silva MA; Saraiva GK; Politi MJ; Valente AP; Almeida FC; Chaimovich H; Rodrigues MA; Bemquerer MP; Schreier S; Cuccovia IM Biochim Biophys Acta; 2014 Jul; 1838(7):1985-99. PubMed ID: 24743023 [TBL] [Abstract][Full Text] [Related]
55. Interaction of the antimicrobial peptide cyclo(RRWWRF) with membranes by molecular dynamics simulations. Appelt C; Eisenmenger F; Kühne R; Schmieder P; Söderhäll JA Biophys J; 2005 Oct; 89(4):2296-306. PubMed ID: 16040748 [TBL] [Abstract][Full Text] [Related]
56. Interaction of Halictine-Related Antimicrobial Peptides with Membrane Models. Pazderková M; Maloň P; Zíma V; Hofbauerová K; Kopecký V; Kočišová E; Pazderka T; Čeřovský V; Bednárová L Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30717183 [TBL] [Abstract][Full Text] [Related]
57. Identification of the Crucial Residues in the Early Insertion of Pardaxin into Different Phospholipid Bilayers. Jafari M; Mehrnejad F; Aghdami R; Chaparzadeh N; Razaghi Moghadam Kashani Z; Doustdar F J Chem Inf Model; 2017 Apr; 57(4):929-941. PubMed ID: 28301157 [TBL] [Abstract][Full Text] [Related]
58. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane. Tolokh IS; Vivcharuk V; Tomberli B; Gray CG Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031911. PubMed ID: 19905150 [TBL] [Abstract][Full Text] [Related]
59. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? Strandberg E; Ulrich AS Biochim Biophys Acta; 2015 Sep; 1848(9):1944-54. PubMed ID: 25726906 [TBL] [Abstract][Full Text] [Related]
60. Structure of magainin and alamethicin in model membranes studied by x-ray reflectivity. Li C; Salditt T Biophys J; 2006 Nov; 91(9):3285-300. PubMed ID: 16920839 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]