These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 31172848)
1. System level analysis of motor-related neural activities in larval Yoon Y; Park J; Taniguchi A; Kohsaka H; Nakae K; Nonaka S; Ishii S; Nose A J Neurogenet; 2019 Sep; 33(3):179-189. PubMed ID: 31172848 [TBL] [Abstract][Full Text] [Related]
2. Gap Junction-Mediated Signaling from Motor Neurons Regulates Motor Generation in the Central Circuits of Larval Matsunaga T; Kohsaka H; Nose A J Neurosci; 2017 Feb; 37(8):2045-2060. PubMed ID: 28115483 [TBL] [Abstract][Full Text] [Related]
3. Imaging fictive locomotor patterns in larval Drosophila. Pulver SR; Bayley TG; Taylor AL; Berni J; Bate M; Hedwig B J Neurophysiol; 2015 Nov; 114(5):2564-77. PubMed ID: 26311188 [TBL] [Abstract][Full Text] [Related]
4. Data-driven analysis of motor activity implicates 5-HT2A neurons in backward locomotion of larval Drosophila. Park J; Kondo S; Tanimoto H; Kohsaka H; Nose A Sci Rep; 2018 Jul; 8(1):10307. PubMed ID: 29985473 [TBL] [Abstract][Full Text] [Related]
5. Olfactory stimuli and moonwalker SEZ neurons can drive backward locomotion in Drosophila. Israel S; Rozenfeld E; Weber D; Huetteroth W; Parnas M Curr Biol; 2022 Mar; 32(5):1131-1149.e7. PubMed ID: 35139358 [TBL] [Abstract][Full Text] [Related]
6. Single neuron activity in the Drosophila larval CNS detected with calcium indicators. Macleod GT; Suster ML; Charlton MP; Atwood HL J Neurosci Methods; 2003 Aug; 127(2):167-78. PubMed ID: 12906946 [TBL] [Abstract][Full Text] [Related]
7. A two-layer neural circuit controls fast forward locomotion in Drosophila. Zhao Q; Li X; Wen J; He Y; Zheng N; Li W; Cardona A; Gong Z Curr Biol; 2024 Aug; 34(15):3439-3453.e5. PubMed ID: 39053465 [TBL] [Abstract][Full Text] [Related]
8. Role of serotonergic neurons in the Drosophila larval response to light. Rodriguez Moncalvo VG; Campos AR BMC Neurosci; 2009 Jun; 10():66. PubMed ID: 19549295 [TBL] [Abstract][Full Text] [Related]
9. The tail segments are required by the performance but not the accomplishment of various modes of Drosophila larval locomotion. He Y; Ding Y; Gong C; Zhou J; Gong Z Behav Brain Res; 2024 Aug; 471():115074. PubMed ID: 38825023 [TBL] [Abstract][Full Text] [Related]
10. The role of octopamine and tyramine in Drosophila larval locomotion. Selcho M; Pauls D; El Jundi B; Stocker RF; Thum AS J Comp Neurol; 2012 Nov; 520(16):3764-85. PubMed ID: 22627970 [TBL] [Abstract][Full Text] [Related]
11. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae. Hückesfeld S; Schoofs A; Schlegel P; Miroschnikow A; Pankratz MJ PLoS One; 2015; 10(8):e0135011. PubMed ID: 26252658 [TBL] [Abstract][Full Text] [Related]
12. Electrophysiological and morphological characterization of identified motor neurons in the Drosophila third instar larva central nervous system. Choi JC; Park D; Griffith LC J Neurophysiol; 2004 May; 91(5):2353-65. PubMed ID: 14695352 [TBL] [Abstract][Full Text] [Related]
13. Silencing synaptic communication between random interneurons during Drosophila larval locomotion. Iyengar BG; Chou CJ; Vandamme KM; Klose MK; Zhao X; Akhtar-Danesh N; Campos AR; Atwood HL Genes Brain Behav; 2011 Nov; 10(8):883-900. PubMed ID: 21895974 [TBL] [Abstract][Full Text] [Related]
14. Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation. Fox LE; Soll DR; Wu CF J Neurosci; 2006 Feb; 26(5):1486-98. PubMed ID: 16452672 [TBL] [Abstract][Full Text] [Related]
16. Selection of behaviors and segmental coordination during larval locomotion is disrupted by nuclear polyglutamine inclusions in a new Drosophila Huntington's disease-like model. Nishimura Y; Yalgin C; Akimoto S; Doumanis J; Sasajima R; Nukina N; Miyakawa H; Moore AW; Morimoto T J Neurogenet; 2010 Dec; 24(4):194-206. PubMed ID: 21087194 [TBL] [Abstract][Full Text] [Related]
17. Localization of muscarinic acetylcholine receptor-dependent rhythm-generating modules in the Jonaitis J; MacLeod J; Pulver SR J Neurophysiol; 2022 Apr; 127(4):1098-1116. PubMed ID: 35294308 [TBL] [Abstract][Full Text] [Related]
18. Optogenetic perturbation of neural activity with laser illumination in semi-intact drosophila larvae in motion. Matsunaga T; Fushiki A; Nose A; Kohsaka H J Vis Exp; 2013 Jul; (77):e50513. PubMed ID: 23851598 [TBL] [Abstract][Full Text] [Related]
19. A multilayer circuit architecture for the generation of distinct locomotor behaviors in Zarin AA; Mark B; Cardona A; Litwin-Kumar A; Doe CQ Elife; 2019 Dec; 8():. PubMed ID: 31868582 [TBL] [Abstract][Full Text] [Related]