These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31172910)

  • 21. Emergence and control of fluoroquinolone-resistant, toxin A-negative, toxin B-positive Clostridium difficile.
    Drudy D; Harnedy N; Fanning S; Hannan M; Kyne L
    Infect Control Hosp Epidemiol; 2007 Aug; 28(8):932-40. PubMed ID: 17620240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation.
    Edwards AN; Krall EG; McBride SM
    J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31659010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drivers of Clostridioides difficile hypervirulent ribotype 027 spore germination, vegetative cell growth and toxin production in vitro.
    Yuille S; Mackay WG; Morrison DJ; Tedford MC
    Clin Microbiol Infect; 2020 Jul; 26(7):941.e1-941.e7. PubMed ID: 31715298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of natural products on several stages of the spore cycle of Clostridium difficile in vitro.
    Roshan N; Riley TV; Hammer KA
    J Appl Microbiol; 2018 Sep; 125(3):710-723. PubMed ID: 29675852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular characterization and antimicrobial susceptibilities of extra-intestinal Clostridium difficile isolates.
    Zheng L; Citron DM; Genheimer CW; Sigmon SF; Carman RJ; Lyerly DM; Goldstein EJ
    Anaerobe; 2007; 13(3-4):114-20. PubMed ID: 17531516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids.
    Thanissery R; Winston JA; Theriot CM
    Anaerobe; 2017 Jun; 45():86-100. PubMed ID: 28279860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fidaxomicin inhibits toxin production in Clostridium difficile.
    Babakhani F; Bouillaut L; Sears P; Sims C; Gomez A; Sonenshein AL
    J Antimicrob Chemother; 2013 Mar; 68(3):515-22. PubMed ID: 23208832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the effect of supplementation on Clostridioides (Clostridium) difficile spore recovery in two solid agars.
    Pickering DS; Vernon JJ; Freeman J; Wilcox MH; Chilton CH
    Anaerobe; 2018 Apr; 50():38-43. PubMed ID: 29408598
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Zhu D; Sorg JA; Sun X
    Front Cell Infect Microbiol; 2018; 8():29. PubMed ID: 29473021
    [No Abstract]   [Full Text] [Related]  

  • 30. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination.
    Francis MB; Allen CA; Sorg JA
    J Bacteriol; 2015 Jul; 197(14):2276-83. PubMed ID: 25917906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biocide Resistance and Transmission of Clostridium difficile Spores Spiked onto Clinical Surfaces from an American Health Care Facility.
    Dyer C; Hutt LP; Burky R; Joshi LT
    Appl Environ Microbiol; 2019 Sep; 85(17):. PubMed ID: 31300397
    [No Abstract]   [Full Text] [Related]  

  • 32. Impact on toxin production and cell morphology in Clostridium difficile by ridinilazole (SMT19969), a novel treatment for C. difficile infection.
    Bassères E; Endres BT; Khaleduzzaman M; Miraftabi F; Alam MJ; Vickers RJ; Garey KW
    J Antimicrob Chemother; 2016 May; 71(5):1245-51. PubMed ID: 26895772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular characterization of Clostridium difficile isolated from carriage and association of its pathogenicity to prevalent toxic genes.
    Abuderman AA; Mateen A; Syed R; Sawsan Aloahd M
    Microb Pathog; 2018 Jul; 120():1-7. PubMed ID: 29684543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lactobacillus acidophilus modulates the virulence of Clostridium difficile.
    Yun B; Oh S; Griffiths MW
    J Dairy Sci; 2014; 97(8):4745-58. PubMed ID: 24856984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A combination of the probiotic and prebiotic product can prevent the germination of Clostridium difficile spores and infection.
    Rätsep M; Kõljalg S; Sepp E; Smidt I; Truusalu K; Songisepp E; Stsepetova J; Naaber P; Mikelsaar RH; Mikelsaar M
    Anaerobe; 2017 Oct; 47():94-103. PubMed ID: 28465256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential use of inhibitors of bacteria spore germination in the prophylactic treatment of anthrax and Clostridium difficile-associated disease.
    Alvarez Z; Abel-Santos E
    Expert Rev Anti Infect Ther; 2007 Oct; 5(5):783-92. PubMed ID: 17914913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of changes in the epidemiology of Clostridium difficile isolated from diarrheal patients in Hungary.
    Terhes G; Urbán E; Sóki J; Szikra L; Konkoly-Thege M; Vollain M; Nagy E
    Anaerobe; 2009 Dec; 15(6):237-40. PubMed ID: 19682411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of sub-MIC concentrations of antibiotics on growth of and toxin production by Clostridium difficile.
    Drummond LJ; Smith DGE; Poxton IR
    J Med Microbiol; 2003 Dec; 52(Pt 12):1033-1038. PubMed ID: 14614060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increasing prevalence of toxin A-negative, toxin B-positive isolates of Clostridium difficile in Korea: impact on laboratory diagnosis.
    Kim H; Riley TV; Kim M; Kim CK; Yong D; Lee K; Chong Y; Park JW
    J Clin Microbiol; 2008 Mar; 46(3):1116-7. PubMed ID: 18199783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity of vancomycin against epidemic Clostridium difficile strains in a human gut model.
    Baines SD; O'Connor R; Saxton K; Freeman J; Wilcox MH
    J Antimicrob Chemother; 2009 Mar; 63(3):520-5. PubMed ID: 19112083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.