BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31173022)

  • 1. A homobifunctional imidoester-based microfluidic system for simultaneous DNA and protein isolation from solid or liquid biopsy samples.
    Jang YO; Jin CE; Choi EH; Shin JH; Kweon J; Koo B; Lim SB; Lee SW; Shin Y
    Lab Chip; 2019 Jun; 19(13):2256-2264. PubMed ID: 31173022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic devices for nucleic acid (NA) isolation, isothermal NA amplification, and real-time detection.
    Mauk MG; Liu C; Sadik M; Bau HH
    Methods Mol Biol; 2015; 1256():15-40. PubMed ID: 25626529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding circulating nucleic acids in human serum using microfluidic single molecule spectroscopy.
    Liu KJ; Brock MV; Shih IeM; Wang TH
    J Am Chem Soc; 2010 Apr; 132(16):5793-8. PubMed ID: 20364832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magneto-capillary valve for integrated purification and enrichment of nucleic acids and proteins.
    den Dulk RC; Schmidt KA; Sabatté G; Liébana S; Prins MW
    Lab Chip; 2013 Jan; 13(1):106-18. PubMed ID: 23128479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Automated and Manual DNA Isolation Methods for DNA Methylation Analysis of Biopsy, Fresh Frozen, and Formalin-Fixed, Paraffin-Embedded Colorectal Cancer Samples.
    Kalmár A; Péterfia B; Wichmann B; Patai ÁV; Barták BK; Nagy ZB; Furi I; Tulassay Z; Molnár B
    J Lab Autom; 2015 Dec; 20(6):642-51. PubMed ID: 25576093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple, low-cost, and rapid device for a DNA methylation-specific amplification/detection system using a flexible plastic and silicon complex.
    Lee TY; Shin Y; Park MK
    Lab Chip; 2014 Nov; 14(21):4220-9. PubMed ID: 25184832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Dimethyl Pimelimidate with Microfluidic System for Nucleic Acids Extraction without Electricity.
    Jin CE; Lee TY; Koo B; Choi KC; Chang S; Park SY; Kim JY; Kim SH; Shin Y
    Anal Chem; 2017 Jul; 89(14):7502-7510. PubMed ID: 28633525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples.
    Chomczynski P
    Biotechniques; 1993 Sep; 15(3):532-4, 536-7. PubMed ID: 7692896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic isolation of nucleic acids.
    Reinholt SJ; Baeumner AJ
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):13988-4001. PubMed ID: 25307083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A column-based rapid method for the simultaneous isolation of DNA, RNA, miRNA and proteins.
    Rajput SK; Dave VP; Rajput A; Pandey HP; Datta TK; Singh RK
    Cell Biol Int; 2012 Sep; 36(9):779-83. PubMed ID: 22553923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A self-contained fully-enclosed microfluidic cartridge for lab on a chip.
    Yobas L; Cheow LF; Tang KC; Yong SE; Ong EK; Wong L; Teo WC; Ji H; Rafeah S; Yu C
    Biomed Microdevices; 2009 Dec; 11(6):1279-88. PubMed ID: 19757073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics.
    Shen S; Ma C; Zhao L; Wang Y; Wang JC; Xu J; Li T; Pang L; Wang J
    Lab Chip; 2014 Jul; 14(14):2525-38. PubMed ID: 24862501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid isolation of cfDNA from large-volume whole blood on a centrifugal microfluidic chip based on immiscible phase filtration.
    Hu F; Li J; Peng N; Li Z; Zhang Z; Zhao S; Duan M; Tian H; Li L; Zhang P
    Analyst; 2019 Jul; 144(14):4162-4174. PubMed ID: 31166335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Isolation of Circulating Tumor Cells Using a Simple Wedge-Shaped Microfluidic Device.
    Qin L; Zhou W; Zhang S; Cheng B; Wang S; Li S; Yang Y; Wang S; Liu K; Zhang N
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1536-1541. PubMed ID: 30307854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of microcolumns and microfluidic fractionators on multitasking centrifugal microfluidic platforms for the analysis of biomolecules.
    Moschou EA; Nicholson AD; Jia G; Zoval JV; Madou MJ; Bachas LG; Daunert S
    Anal Bioanal Chem; 2006 Jun; 385(3):596-605. PubMed ID: 16715279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bis(sulfosuccinimidyl)suberate-Based Helix-Shaped Microchannels as Enhancers of Biomolecule Isolation from Liquid Biopsies.
    Jin CE; Koo B; Lee HJ; Park IJ; Kim SH; Shin Y
    Anal Chem; 2020 Sep; 92(17):11994-12001. PubMed ID: 32867489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous microfluidic DNA and protein trapping and concentration by balancing transverse electrokinetic forces.
    Morales MC; Lin H; Zahn JD
    Lab Chip; 2012 Jan; 12(1):99-108. PubMed ID: 22045330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast and Label-Free Isolation of Circulating Tumor Cells from Blood: From a Research Microfluidic Platform to an Automated Fluidic Instrument, VTX-1 Liquid Biopsy System.
    Lemaire CA; Liu SZ; Wilkerson CL; Ramani VC; Barzanian NA; Huang KW; Che J; Chiu MW; Vuppalapaty M; Dimmick AM; Carlo DD; Kochersperger ML; Crouse SC; Jeffrey SS; Englert RF; Hengstler S; Renier C; Sollier-Christen E
    SLAS Technol; 2018 Feb; 23(1):16-29. PubMed ID: 29355087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid phase nucleic acid extraction technique in a microfluidic chip using a novel non-chaotropic agent: dimethyl adipimidate.
    Shin Y; Perera AP; Wong CC; Park MK
    Lab Chip; 2014 Jan; 14(2):359-68. PubMed ID: 24263404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode.
    Hernández-Neuta I; Pereiro I; Ahlford A; Ferraro D; Zhang Q; Viovy JL; Descroix S; Nilsson M
    Biosens Bioelectron; 2018 Apr; 102():531-539. PubMed ID: 29216580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.