These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31173061)

  • 21. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins.
    Jones DT; Singh T; Kosciolek T; Tetchner S
    Bioinformatics; 2015 Apr; 31(7):999-1006. PubMed ID: 25431331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DeepHelicon: Accurate prediction of inter-helical residue contacts in transmembrane proteins by residual neural networks.
    Sun J; Frishman D
    J Struct Biol; 2020 Oct; 212(1):107574. PubMed ID: 32663598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detecting distant-homology protein structures by aligning deep neural-network based contact maps.
    Zheng W; Wuyun Q; Li Y; Mortuza SM; Zhang C; Pearce R; Ruan J; Zhang Y
    PLoS Comput Biol; 2019 Oct; 15(10):e1007411. PubMed ID: 31622328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks.
    Li Y; Zhang C; Bell EW; Zheng W; Zhou X; Yu DJ; Zhang Y
    PLoS Comput Biol; 2021 Mar; 17(3):e1008865. PubMed ID: 33770072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DEEPCON: protein contact prediction using dilated convolutional neural networks with dropout.
    Adhikari B
    Bioinformatics; 2020 Jan; 36(2):470-477. PubMed ID: 31359036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An ensemble approach to protein fold classification by integration of template-based assignment and support vector machine classifier.
    Xia J; Peng Z; Qi D; Mu H; Yang J
    Bioinformatics; 2017 Mar; 33(6):863-870. PubMed ID: 28039166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. rawMSA: End-to-end Deep Learning using raw Multiple Sequence Alignments.
    Mirabello C; Wallner B
    PLoS One; 2019; 14(8):e0220182. PubMed ID: 31415569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of several key factors influencing deep learning-based inter-residue contact prediction.
    Wu T; Hou J; Adhikari B; Cheng J
    Bioinformatics; 2020 Feb; 36(4):1091-1098. PubMed ID: 31504181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SPOT-Contact-LM: improving single-sequence-based prediction of protein contact map using a transformer language model.
    Singh J; Litfin T; Singh J; Paliwal K; Zhou Y
    Bioinformatics; 2022 Mar; 38(7):1888-1894. PubMed ID: 35104320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks.
    Hanson J; Paliwal K; Litfin T; Yang Y; Zhou Y
    Bioinformatics; 2018 Dec; 34(23):4039-4045. PubMed ID: 29931279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep architectures for protein contact map prediction.
    Di Lena P; Nagata K; Baldi P
    Bioinformatics; 2012 Oct; 28(19):2449-57. PubMed ID: 22847931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A unified approach to protein domain parsing with inter-residue distance matrix.
    Zhu K; Su H; Peng Z; Yang J
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. End-to-end learning of multiple sequence alignments with differentiable Smith-Waterman.
    Petti S; Bhattacharya N; Rao R; Dauparas J; Thomas N; Zhou J; Rush AM; Koo P; Ovchinnikov S
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36355460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved structure-related prediction for insufficient homologous proteins using MSA enhancement and pre-trained language model.
    Meng Q; Guo F; Tang J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37321965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. mTM-align: an algorithm for fast and accurate multiple protein structure alignment.
    Dong R; Peng Z; Zhang Y; Yang J
    Bioinformatics; 2018 May; 34(10):1719-1725. PubMed ID: 29281009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved Protein Structure Prediction Using a New Multi-Scale Network and Homologous Templates.
    Su H; Wang W; Du Z; Peng Z; Gao SH; Cheng MM; Yang J
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102592. PubMed ID: 34719864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved Protein Real-Valued Distance Prediction Using Deep Residual Dense Network (DRDN).
    Geethu S; Vimina ER
    Protein J; 2022 Oct; 41(4-5):468-476. PubMed ID: 36008645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.