These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31173512)

  • 21. Microbial origin of excess methane in glacial ice and implications for life on Mars.
    Tung HC; Bramall NE; Price PB
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18292-6. PubMed ID: 16339015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments.
    Maus D; Heinz J; Schirmack J; Airo A; Kounaves SP; Wagner D; Schulze-Makuch D
    Sci Rep; 2020 Jan; 10(1):6. PubMed ID: 31913316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues.
    Rettberg P; Rabbow E; Panitz C; Horneck G
    Adv Space Res; 2004; 33(8):1294-301. PubMed ID: 15803617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methane Seepage on Mars: Where to Look and Why.
    Oehler DZ; Etiope G
    Astrobiology; 2017 Dec; 17(12):1233-1264. PubMed ID: 28771029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some potentialities of living organisms under simulated Martian conditions.
    Lozina-Lozinsky LK; Bychenkova VN; Zaar EI; Levin VL; Rumyantseva VM
    Life Sci Space Res; 1971; 9():159-65. PubMed ID: 12206179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-sustaining Mars colonies utilizing the North Polar Cap and the Martian atmosphere.
    Powell J; Maise G; Paniagua J
    Acta Astronaut; 2001; 48(5-12):737-65. PubMed ID: 11858273
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A geochemical model for the formation of hydrothermal carbonates on Mars.
    Griffith LL; Shock EL
    Nature; 1995 Oct; 377(6548):406-8. PubMed ID: 7566116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aqueous geochemistry on early Mars.
    Schaefer MW
    Geochim Cosmochim Acta; 1993 Oct; 57(19):4619-25. PubMed ID: 11539579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supercritical Carbon Dioxide Extraction of Coronene in the Presence of Perchlorate for In Situ Chemical Analysis of Martian Regolith.
    McCaig HC; Stockton A; Crilly C; Chung S; Kanik I; Lin Y; Zhong F
    Astrobiology; 2016 Sep; 16(9):703-14. PubMed ID: 27623199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent findings in methanotrophs: genetics, molecular ecology, and biopotential.
    Ahmadi F; Lackner M
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):60. PubMed ID: 38183483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methane production by methanogens following an aerobic washing procedure: simplifying methods for manipulation.
    McAllister SA; Kral TA
    Astrobiology; 2006 Dec; 6(6):819-23. PubMed ID: 17155882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Follow the Oxygen: Comparative Histories of Planetary Oxygenation and Opportunities for Aerobic Life.
    Ward LM; Stamenković V; Hand K; Fischer WW
    Astrobiology; 2019 Jun; 19(6):811-824. PubMed ID: 31188035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Long-Term CO2 Enrichment on Soil-Atmosphere CH4 Fluxes and the Spatial Micro-Distribution of Methanotrophic Bacteria.
    Karbin S; Guillet C; Kammann CI; Niklaus PA
    PLoS One; 2015; 10(7):e0131665. PubMed ID: 26147694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First measurement of helium on Mars: implications for the problem of radiogenic gases on the terrestrial planets.
    Krasnopolsky VA; Bowyer S; Chakrabarti S; Gladstone GR; McDonald JS
    Icarus; 1994 Jun; 109(2):337-51. PubMed ID: 11539139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depth profiles of methane oxidation potentials and methanotrophic community in a lab-scale biocover.
    Lee EH; Moon KE; Kim TG; Cho KS
    J Biotechnol; 2014 Aug; 184():56-62. PubMed ID: 24862199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial Growth in Martian Soil Simulants Under Terrestrial Conditions: Guiding the Search for Life on Mars.
    Naz N; Liu D; Harandi BF; Kounaves SP
    Astrobiology; 2022 Oct; 22(10):1210-1221. PubMed ID: 36000998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Cryptobiosphere of Mars].
    Gal'chenko VF
    Aviakosm Ekolog Med; 2003; 37(5):15-22. PubMed ID: 14730728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites.
    Farquhar J; Savarino J; Jackson TL; Thiemens MH
    Nature; 2000 Mar; 404(6773):50-2. PubMed ID: 10716436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems.
    McCollom TM; Shock EL
    Geochim Cosmochim Acta; 1997 Oct; 61(20):4375-91. PubMed ID: 11541662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological contamination of Mars. I. Survival of terrestrial microorganisms in simulated Martian environments.
    Scher S; Packer E; Sagan C
    Life Sci Space Res; 1964; 2():352-6. PubMed ID: 11883443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.