These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31173524)

  • 1. Perspectives on Low-Temperature Electrolysis and Potential for Renewable Hydrogen at Scale.
    Ayers K; Danilovic N; Ouimet R; Carmo M; Pivovar B; Bornstein M
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():219-239. PubMed ID: 31173524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis.
    Bambagioni V; Bevilacqua M; Bianchini C; Filippi J; Lavacchi A; Marchionni A; Vizza F; Shen PK
    ChemSusChem; 2010 Jul; 3(7):851-5. PubMed ID: 20572287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes.
    Rozendal RA; Hamelers HV; Molenkamp RJ; Buisman CJ
    Water Res; 2007 May; 41(9):1984-94. PubMed ID: 17343894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining Nontraditional Water Sources for a Distributed Hydrogen Economy.
    Winter LR; Cooper NJ; Lee B; Patel SK; Wang L; Elimelech M
    Environ Sci Technol; 2022 Aug; 56(15):10577-10585. PubMed ID: 35829620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs).
    Cheng S; Logan BE
    Water Sci Technol; 2008; 58(4):853-7. PubMed ID: 18776621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen.
    Hodges A; Hoang AL; Tsekouras G; Wagner K; Lee CY; Swiegers GF; Wallace GG
    Nat Commun; 2022 Mar; 13(1):1304. PubMed ID: 35292657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raw biomass electroreforming coupled to green hydrogen generation.
    Zhao H; Lu D; Wang J; Tu W; Wu D; Koh SW; Gao P; Xu ZJ; Deng S; Zhou Y; You B; Li H
    Nat Commun; 2021 Mar; 12(1):2008. PubMed ID: 33790295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble metal-free hydrogen evolution catalysts for water splitting.
    Zou X; Zhang Y
    Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production using single-chamber membrane-free microbial electrolysis cells.
    Hu H; Fan Y; Liu H
    Water Res; 2008 Sep; 42(15):4172-8. PubMed ID: 18718624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes.
    Kaczur JJ; Yang H; Liu Z; Sajjad SD; Masel RI
    Front Chem; 2018; 6():263. PubMed ID: 30018951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.
    Ren X; Wei Q; Hu S; Wei S
    J Hazard Mater; 2010 Sep; 181(1-3):908-15. PubMed ID: 20554384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hydrogen gas bio-based economy and the production of renewable building block chemicals, food and energy.
    De Vrieze J; Verbeeck K; Pikaar I; Boere J; Van Wijk A; Rabaey K; Verstraete W
    N Biotechnol; 2020 Mar; 55():12-18. PubMed ID: 31550548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions.
    Luo X; Nam JY; Zhang F; Zhang X; Liang P; Huang X; Logan BE
    Bioresour Technol; 2013 Jul; 140():399-405. PubMed ID: 23711946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining biocatalyzed electrolysis with anaerobic digestion.
    Clauwaert P; Tolêdo R; van der Ha D; Crab R; Verstraete W; Hu H; Udert KM; Rabaey K
    Water Sci Technol; 2008; 57(4):575-9. PubMed ID: 18359998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-powered water splitting using flowing kinetic energy.
    Tang W; Han Y; Han CB; Gao CZ; Cao X; Wang ZL
    Adv Mater; 2015 Jan; 27(2):272-6. PubMed ID: 25413298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas Crossover Regulation by Porosity-Controlled Glass Sheet Achieves Pure Hydrogen Production by Buffered Water Electrolysis at Neutral pH.
    Naito T; Shinagawa T; Nishimoto T; Takanabe K
    ChemSusChem; 2022 Feb; 15(3):e202102294. PubMed ID: 34907667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molybdenum Carbide Nanoparticles on Carbon Nanotubes and Carbon Xerogel: Low-Cost Cathodes for Hydrogen Production by Alkaline Water Electrolysis.
    Šljukić B; Santos DM; Vujković M; Amaral L; Rocha RP; Sequeira CA; Figueiredo JL
    ChemSusChem; 2016 May; 9(10):1200-8. PubMed ID: 27101476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Photo-Electrochemically Generated Hydrogen with Fuel Cell Based Micro-Combined Heat and Power: A Dynamic System Modelling Study.
    Ronaszegi K; Fraga ES; Darr J; Shearing PR; Brett DJL
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31905663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards Versatile and Sustainable Hydrogen Production through Electrocatalytic Water Splitting: Electrolyte Engineering.
    Shinagawa T; Takanabe K
    ChemSusChem; 2017 Apr; 10(7):1318-1336. PubMed ID: 27984671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen.
    Chae KJ; Choi MJ; Kim KY; Ajayi FF; Chang IS; Kim IS
    Environ Sci Technol; 2009 Dec; 43(24):9525-30. PubMed ID: 20000551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.