These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31173713)

  • 1. Breakthrough Moments: Genome Editing and Organoids.
    Roper J; Yilmaz ÖH
    Cell Stem Cell; 2019 Jun; 24(6):841-842. PubMed ID: 31173713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 system: a powerful technology for in vivo and ex vivo gene therapy.
    Zhang X; Wang L; Liu M; Li D
    Sci China Life Sci; 2017 May; 60(5):468-475. PubMed ID: 28534255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 therapeutics for liver diseases.
    Aravalli RN; Steer CJ
    J Cell Biochem; 2018 Jun; 119(6):4265-4278. PubMed ID: 29266637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Point: Treating Human Genetic Disease One Base Pair at a Time: The Benefits of Gene Editing.
    Katsanis N
    Clin Chem; 2018 Mar; 64(3):486-488. PubMed ID: 29490998
    [No Abstract]   [Full Text] [Related]  

  • 5. Modeling Wnt signaling by CRISPR-Cas9 genome editing recapitulates neoplasia in human Barrett epithelial organoids.
    Liu X; Cheng Y; Abraham JM; Wang Z; Wang Z; Ke X; Yan R; Shin EJ; Ngamruengphong S; Khashab MA; Zhang G; McNamara G; Ewald AJ; Lin D; Liu Z; Meltzer SJ
    Cancer Lett; 2018 Nov; 436():109-118. PubMed ID: 30144514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-mediated correction of human genetic disease.
    Men K; Duan X; He Z; Yang Y; Yao S; Wei Y
    Sci China Life Sci; 2017 May; 60(5):447-457. PubMed ID: 28534256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review.
    Babačić H; Mehta A; Merkel O; Schoser B
    PLoS One; 2019; 14(2):e0212198. PubMed ID: 30794581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Therapeutic Genome Editing in China.
    Yang Y; Wang Q; Li Q; Men K; He Z; Deng H; Ji W; Wei Y
    Hum Gene Ther; 2018 Feb; 29(2):136-145. PubMed ID: 29446996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Development and Application of a Base Editor in Biomedicine.
    Wang F; Zeng Y; Wang Y; Niu Y
    Biomed Res Int; 2020; 2020():2907623. PubMed ID: 32855962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The CRISPR-Cas system: beyond genome editing].
    Croteau FR; Rousseau GM; Moineau S
    Med Sci (Paris); 2018 Oct; 34(10):813-819. PubMed ID: 30451675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in CRISPR/Cas-based Gene Therapy in Human Genetic Diseases.
    Wu SS; Li QC; Yin CQ; Xue W; Song CQ
    Theranostics; 2020; 10(10):4374-4382. PubMed ID: 32292501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 Gene Editing: From Basic Mechanisms to Improved Strategies for Enhanced Genome Engineering In Vivo.
    Salsman J; Masson JY; Orthwein A; Dellaire G
    Curr Gene Ther; 2017; 17(4):263-274. PubMed ID: 29173169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models.
    Shao M; Xu TR; Chen CS
    Dongwuxue Yanjiu; 2016 Jul; 37(4):191-204. PubMed ID: 27469250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A protocol for efficient CRISPR-Cas9-mediated knock-in in colorectal cancer patient-derived organoids.
    Okamoto T; Natsume Y; Yamanaka H; Fukuda M; Yao R
    STAR Protoc; 2021 Dec; 2(4):100780. PubMed ID: 34585151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The changing landscape of gene editing in hematopoietic stem cells: a step towards Cas9 clinical translation.
    Dever DP; Porteus MH
    Curr Opin Hematol; 2017 Nov; 24(6):481-488. PubMed ID: 28806273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of Autism Using Organoid Technology.
    Choi H; Song J; Park G; Kim J
    Mol Neurobiol; 2017 Dec; 54(10):7789-7795. PubMed ID: 27844287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome editing for the reproduction and remedy of human diseases in mice.
    Hara S; Takada S
    J Hum Genet; 2018 Feb; 63(2):107-113. PubMed ID: 29180644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of CRISPR/Cas9 by Novel Strategies for Gene Therapy.
    Wang L; Zheng W; Liu S; Li B; Jiang X
    Chembiochem; 2019 Mar; 20(5):634-643. PubMed ID: 30393919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases.
    Kolli N; Lu M; Maiti P; Rossignol J; Dunbar GL
    Neurochem Int; 2018 Jan; 112():187-196. PubMed ID: 28732771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.