These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31173770)

  • 21. Brain responses to 40-Hz binaural beat and effects on emotion and memory.
    Jirakittayakorn N; Wongsawat Y
    Int J Psychophysiol; 2017 Oct; 120():96-107. PubMed ID: 28739482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of high-frequency oscillatory activity in reward processing and learning.
    Marco-Pallarés J; Münte TF; Rodríguez-Fornells A
    Neurosci Biobehav Rev; 2015 Feb; 49():1-7. PubMed ID: 25464028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-intensity interval exercise impairs neuroelectric indices of reinforcement-learning.
    Walsh JJ; Colino FL; Krigolson OE; Luehr S; Gurd BJ; Tschakovsky ME
    Physiol Behav; 2019 Jan; 198():18-26. PubMed ID: 30296402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expectancy affects the feedback-related negativity (FRN) for delayed feedback in probabilistic learning.
    Weismüller B; Bellebaum C
    Psychophysiology; 2016 Nov; 53(11):1739-1750. PubMed ID: 27565454
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Individual differences in reinforcement learning: behavioral, electrophysiological, and neuroimaging correlates.
    Santesso DL; Dillon DG; Birk JL; Holmes AJ; Goetz E; Bogdan R; Pizzagalli DA
    Neuroimage; 2008 Aug; 42(2):807-16. PubMed ID: 18595740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theta-band oscillatory activity differs between gamblers and nongamblers comorbid with attention-deficit hyperactivity disorder in a probabilistic reward-learning task.
    Abouzari M; Oberg S; Tata M
    Behav Brain Res; 2016 Oct; 312():195-200. PubMed ID: 27318102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The modulation of pain in reward processing is reflected by increased P300 and delta oscillation.
    Li X; Zhou X; Zheng H; Wang C
    Brain Cogn; 2023 Jun; 168():105972. PubMed ID: 37079997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reinforcement learning and the reward positivity with aversive outcomes.
    Bauer EA; Watanabe BK; MacNamara A
    Psychophysiology; 2024 Apr; 61(4):e14460. PubMed ID: 37994210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aberrant reward prediction error during Pavlovian appetitive learning in alexithymia.
    Starita F; Pietrelli M; Bertini C; di Pellegrino G
    Soc Cogn Affect Neurosci; 2019 Oct; 14(10):1119-1129. PubMed ID: 31820808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resting-state theta/beta EEG ratio is associated with reward- and punishment-related reversal learning.
    Schutte I; Kenemans JL; Schutter DJLG
    Cogn Affect Behav Neurosci; 2017 Aug; 17(4):754-763. PubMed ID: 28585018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From feedback- to response-based performance monitoring in active and observational learning.
    Bellebaum C; Colosio M
    J Cogn Neurosci; 2014 Sep; 26(9):2111-27. PubMed ID: 24666168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manipulation of feedback expectancy and valence induces negative and positive reward prediction error signals manifest in event-related brain potentials.
    Pfabigan DM; Alexopoulos J; Bauer H; Sailer U
    Psychophysiology; 2011 May; 48(5):656-64. PubMed ID: 21039585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the relationship between learning strategy and feedback processing in the weather prediction task--Evidence from event-related potentials.
    Rustemeier M; Schwabe L; Bellebaum C
    Neuropsychologia; 2013 Mar; 51(4):695-703. PubMed ID: 23347964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Processing graded feedback: electrophysiological correlates of learning from small and large errors.
    Luft CD; Takase E; Bhattacharya J
    J Cogn Neurosci; 2014 May; 26(5):1180-93. PubMed ID: 24345170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. To choose or to avoid: age differences in learning from positive and negative feedback.
    Eppinger B; Kray J
    J Cogn Neurosci; 2011 Jan; 23(1):41-52. PubMed ID: 19925176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological reward signals predict episodic memory for immediate and delayed positive feedback events.
    Höltje G; Mecklinger A
    Brain Res; 2018 Dec; 1701():64-74. PubMed ID: 30017716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing.
    Frederick DE; Brown A; Brim E; Mehta N; Vujovic M; Kay LM
    J Neurosci; 2016 Jul; 36(29):7750-67. PubMed ID: 27445151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The reward positivity is sensitive to affective liking.
    Brown DR; Jackson TCJ; Cavanagh JF
    Cogn Affect Behav Neurosci; 2022 Apr; 22(2):258-267. PubMed ID: 34599487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The importance of agency in human reward processing.
    Hassall CD; Hajcak G; Krigolson OE
    Cogn Affect Behav Neurosci; 2019 Dec; 19(6):1458-1466. PubMed ID: 31187443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensitivity of frontal beta oscillations to reward valence but not probability.
    HajiHosseini A; Holroyd CB
    Neurosci Lett; 2015 Aug; 602():99-103. PubMed ID: 26149231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.