These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 31173882)

  • 1. Beneath the surface: Evolution of methane activity in the bacterial multicomponent monooxygenases.
    Osborne CD; Haritos VS
    Mol Phylogenet Evol; 2019 Oct; 139():106527. PubMed ID: 31173882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases.
    Wang W; Liang AD; Lippard SJ
    Acc Chem Res; 2015 Sep; 48(9):2632-9. PubMed ID: 26293615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxylation of methane through component interactions in soluble methane monooxygenases.
    Lee SJ
    J Microbiol; 2016 Apr; 54(4):277-82. PubMed ID: 27033202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray structure of a hydroxylase-regulatory protein complex from a hydrocarbon-oxidizing multicomponent monooxygenase, Pseudomonas sp. OX1 phenol hydroxylase.
    Sazinsky MH; Dunten PW; McCormick MS; DiDonato A; Lippard SJ
    Biochemistry; 2006 Dec; 45(51):15392-404. PubMed ID: 17176061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Horizontal gene transfer of three co-inherited methane monooxygenase systems gave rise to methanotrophy in the Proteobacteria.
    Osborne CD; Haritos VS
    Mol Phylogenet Evol; 2018 Dec; 129():171-181. PubMed ID: 30149053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron Transfer to Hydroxylase through Component Interactions in Soluble Methane Monooxygenase.
    Lee C; Hwang Y; Kang HG; Lee SJ
    J Microbiol Biotechnol; 2022 Mar; 32(3):287-293. PubMed ID: 35131957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic characterization of the soluble butane monooxygenase from Thauera butanivorans, formerly 'Pseudomonas butanovora'.
    Cooley RB; Dubbels BL; Sayavedra-Soto LA; Bottomley PJ; Arp DJ
    Microbiology (Reading); 2009 Jun; 155(Pt 6):2086-2096. PubMed ID: 19383682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Leeuwenhoek Lecture 2000 the natural and unnatural history of methane-oxidizing bacteria.
    Dalton H
    Philos Trans R Soc Lond B Biol Sci; 2005 Jun; 360(1458):1207-22. PubMed ID: 16147517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed amino acid substitutions in the hydroxylase alpha subunit of butane monooxygenase from Pseudomonas butanovora: Implications for substrates knocking at the gate.
    Halsey KH; Sayavedra-Soto LA; Bottomley PJ; Arp DJ
    J Bacteriol; 2006 Jul; 188(13):4962-9. PubMed ID: 16788204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the hydroxylase of sMMO from Methylococcus capsulatus (Bath) by hydrogen peroxide.
    Jiang Y; Wilkins PC; Dalton H
    Biochim Biophys Acta; 1993 Apr; 1163(1):105-12. PubMed ID: 8476925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved system for protein engineering of the hydroxylase component of soluble methane monooxygenase.
    Smith TJ; Slade SE; Burton NP; Murrell JC; Dalton H
    Appl Environ Microbiol; 2002 Nov; 68(11):5265-73. PubMed ID: 12406713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic oxidation of methane.
    Sirajuddin S; Rosenzweig AC
    Biochemistry; 2015 Apr; 54(14):2283-94. PubMed ID: 25806595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the soluble diiron monooxygenases.
    Leahy JG; Batchelor PJ; Morcomb SM
    FEMS Microbiol Rev; 2003 Oct; 27(4):449-79. PubMed ID: 14550940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane monooxygenase: functionalizing methane at iron and copper.
    Sazinsky MH; Lippard SJ
    Met Ions Life Sci; 2015; 15():205-56. PubMed ID: 25707469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics.
    Wang VC; Maji S; Chen PP; Lee HK; Yu SS; Chan SI
    Chem Rev; 2017 Jul; 117(13):8574-8621. PubMed ID: 28206744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of bacterial and archaeal multicomponent monooxygenases.
    Notomista E; Lahm A; Di Donato A; Tramontano A
    J Mol Evol; 2003 Apr; 56(4):435-45. PubMed ID: 12664163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily.
    Coleman NV; Le NB; Ly MA; Ogawa HE; McCarl V; Wilson NL; Holmes AJ
    ISME J; 2012 Jan; 6(1):171-82. PubMed ID: 21796219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHK from phenol hydroxylase of Pseudomonas sp. OX1. Insight into the role of an accessory protein in bacterial multicomponent monooxygenases.
    Izzo V; Leo G; Scognamiglio R; Troncone L; Birolo L; Di Donato A
    Arch Biochem Biophys; 2011 Jan; 505(1):48-59. PubMed ID: 20920460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR structure of the [2Fe-2S] ferredoxin domain from soluble methane monooxygenase reductase and interaction with its hydroxylase.
    Müller J; Lugovskoy AA; Wagner G; Lippard SJ
    Biochemistry; 2002 Jan; 41(1):42-51. PubMed ID: 11772001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of Methane-Oxidizing Bacteria in Soils from "Hot Lands of Medolla" (Italy) Featured by Anomalous High-Temperatures and Biogenic CO
    Cappelletti M; Ghezzi D; Zannoni D; Capaccioni B; Fedi S
    Microbes Environ; 2016 Dec; 31(4):369-377. PubMed ID: 27645100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.