These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 31173904)

  • 1. Neural correlates of anticipatory cardiac deceleration and its association with the speed of perceptual decision-making, in young and older adults.
    Ribeiro MJ; Castelo-Branco M
    Neuroimage; 2019 Oct; 199():521-533. PubMed ID: 31173904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How perceptual ambiguity affects response inhibition processes.
    Adelhöfer N; Chmielewski WX; Beste C
    J Neurophysiol; 2019 Aug; 122(2):500-511. PubMed ID: 31166823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemispheric asymmetries in the transition from action preparation to execution.
    Sulpizio V; Lucci G; Berchicci M; Galati G; Pitzalis S; Di Russo F
    Neuroimage; 2017 Mar; 148():390-402. PubMed ID: 28069542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of target probability on pre-stimulus brain activity.
    Lucci G; Berchicci M; Perri RL; Spinelli D; Di Russo F
    Neuroscience; 2016 May; 322():121-8. PubMed ID: 26912279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expectancy-related modulations of neural oscillations in continuous performance tasks.
    Bickel S; Dias EC; Epstein ML; Javitt DC
    Neuroimage; 2012 Sep; 62(3):1867-76. PubMed ID: 22691613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac deceleration and E-wave brain potential components in young, middle-aged and elderly adults.
    Friedman D; Putnam L; Hamberger MJ
    Int J Psychophysiol; 1990 Dec; 10(2):185-90. PubMed ID: 2272866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: A mobile brain/body imaging (MoBI) study.
    Malcolm BR; Foxe JJ; Butler JS; De Sanctis P
    Neuroimage; 2015 Aug; 117():230-42. PubMed ID: 25988225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using principal components analysis to examine resting state EEG in relation to task performance.
    Karamacoska D; Barry RJ; Steiner GZ
    Psychophysiology; 2019 May; 56(5):e13327. PubMed ID: 30613986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac afferent activity modulates early neural signature of error detection during skilled performance.
    Bury G; García-Huéscar M; Bhattacharya J; Ruiz MH
    Neuroimage; 2019 Oct; 199():704-717. PubMed ID: 31051292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction time-related activity reflecting periodic, task-specific cognitive control.
    Barber AD; Pekar JJ; Mostofsky SH
    Behav Brain Res; 2016 Jan; 296():100-108. PubMed ID: 26318935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related differences in event-related potentials and pupillary responses in cued reaction time tasks.
    Ribeiro MJ; Castelo-Branco M
    Neurobiol Aging; 2019 Jan; 73():177-189. PubMed ID: 30366291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementary roles of cortical oscillations in automatic and controlled processing during rapid serial tasks.
    Isabella S; Ferrari P; Jobst C; Cheyne JA; Cheyne D
    Neuroimage; 2015 Sep; 118():268-81. PubMed ID: 26049145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG-ERP dynamics in a visual Continuous Performance Test.
    Karamacoska D; Barry RJ; De Blasio FM; Steiner GZ
    Int J Psychophysiol; 2019 Dec; 146():249-260. PubMed ID: 31648022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute psychological stress promotes general alertness and attentional control processes: An ERP study.
    Qi M; Gao H
    Psychophysiology; 2020 Apr; 57(4):e13521. PubMed ID: 31898811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual differences in anticipatory mu rhythm modulation are associated with executive function and processing speed.
    Meredith Weiss S; Laconi RN; Marshall PJ
    Cogn Affect Behav Neurosci; 2020 Oct; 20(5):901-916. PubMed ID: 32794102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological underpinnings of response variability in the Go/NoGo task.
    Karamacoska D; Barry RJ; Steiner GZ
    Int J Psychophysiol; 2018 Dec; 134():159-167. PubMed ID: 30266622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal course of cognitive control in a picture-word interference task.
    Xiao X; Zhang Q; Jia L; Zhang Y; Luo J
    Neuroreport; 2010 Jan; 21(2):104-7. PubMed ID: 19952966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrophysiological study of response conflict processing across the lifespan: assessing the roles of conflict monitoring, cue utilization, response anticipation, and response suppression.
    Hämmerer D; Li SC; Müller V; Lindenberger U
    Neuropsychologia; 2010 Sep; 48(11):3305-16. PubMed ID: 20638396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticipatory neural dynamics of spatial-temporal orienting of attention in younger and older adults.
    Heideman SG; Rohenkohl G; Chauvin JJ; Palmer CE; van Ede F; Nobre AC
    Neuroimage; 2018 Sep; 178():46-56. PubMed ID: 29733953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.