BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31173994)

  • 1. Adsorption characteristics and mechanisms of O-Carboxymethyl chitosan on chalcopyrite and molybdenite.
    Yuan D; Cadien K; Liu Q; Zeng H
    J Colloid Interface Sci; 2019 Sep; 552():659-670. PubMed ID: 31173994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Sodium Alginate on the Flotation Separation of Molybdenite From Chalcopyrite Using Kerosene as Collector.
    Zeng G; Ou L; Zhang W; Zhu Y
    Front Chem; 2020; 8():242. PubMed ID: 32411654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic Polymer Adsorption on Molybdenite Basal and Edge Surfaces and Interaction Mechanism With Air Bubbles.
    Xie L; Wang J; Huang J; Cui X; Wang X; Liu Q; Zhang H; Liu Q; Zeng H
    Front Chem; 2018; 6():361. PubMed ID: 30211150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Interaction of Lignosulfonates for the Separation of Molybdenite and Chalcopyrite in Seawater Flotation Processes.
    Quiroz C; Murga R; Giraldo JD; Gutierrez L; Uribe L
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hetero-difunctional Reagent with Superior Flotation Performance to Chalcopyrite and the Associated Surface Interaction Mechanism.
    Liu S; Xie L; Liu G; Zhong H; Wang Y; Zeng H
    Langmuir; 2019 Mar; 35(12):4353-4363. PubMed ID: 30802069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption and conformation of carboxymethyl cellulose at solid-liquid interfaces using spectroscopic, AFM and allied techniques.
    Wang J; Somasundaran P
    J Colloid Interface Sci; 2005 Nov; 291(1):75-83. PubMed ID: 15907862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of carboxymethyl cellulose layer morphology on hydrophobic mineral surfaces: variation of polymer concentration and ionic strength.
    Beaussart A; Mierczynska-Vasilev A; Beattie DA
    J Colloid Interface Sci; 2010 Jun; 346(2):303-10. PubMed ID: 20347097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical investigation of the interactions of organic and inorganic depressants on basal and edge planes of molybdenite.
    Wang J; Xie L; Lu Q; Wang X; Wang J; Zeng H
    J Colloid Interface Sci; 2020 Jun; 570():350-361. PubMed ID: 32182476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of N-isopropoxypropyl-N'-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS.
    Liu G; Qiu Z; Wang J; Liu Q; Xiao J; Zeng H; Zhong H; Xu Z
    J Colloid Interface Sci; 2015 Jan; 437():42-49. PubMed ID: 25310581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption Mechanism of 4-Amino-5-mercapto-1,2,4-triazole as Flotation Reagent on Chalcopyrite.
    Yin Z; Hu Y; Sun W; Zhang C; He J; Xu Z; Zou J; Guan C; Zhang C; Guan Q; Lin S; Khoso SA
    Langmuir; 2018 Apr; 34(13):4071-4083. PubMed ID: 29489383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction Mechanisms between Air Bubble and Molybdenite Surface: Impact of Solution Salinity and Polymer Adsorption.
    Xie L; Wang J; Yuan D; Shi C; Cui X; Zhang H; Liu Q; Liu Q; Zeng H
    Langmuir; 2017 Mar; 33(9):2353-2361. PubMed ID: 28191980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Sodium
    Huang X; Jia Y; Wang S; Ma X; Cao Z; Zhong H
    Langmuir; 2019 Nov; 35(47):15106-15113. PubMed ID: 31692357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization and Mechanisms of Tannic Acid as a Depressant for Chalcopyrite and Pyrite Separation.
    Sun D; Li M; Zhang M; Cui R; Yang Z; Yu L; Wang D; Yao W
    ACS Omega; 2023 Aug; 8(33):30474-30482. PubMed ID: 37636951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies.
    Beaussart A; Parkinson L; Mierczynska-Vasilev A; Beattie DA
    J Colloid Interface Sci; 2012 Feb; 368(1):608-15. PubMed ID: 22137169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-edged molybdenite achieved by thermal modification for enhancing Pb(II) adsorption in aqueous solutions.
    Yuan Y; Zhan W; Jia F; Song S
    Chemosphere; 2020 Jul; 251():126369. PubMed ID: 32163779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective depression mechanism of polyaspartic acid and calcium oxide on arsenopyrite after copper ions activation and its effect on flotation separation performance.
    Dai Z; Zheng Y; Guo Z; Peng J; Jian S; Wang Z
    J Hazard Mater; 2024 Jul; 473():134689. PubMed ID: 38788583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(II) as template ions.
    Sun S; Wang L; Wang A
    J Hazard Mater; 2006 Aug; 136(3):930-7. PubMed ID: 16730117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan.
    Sun S; Wang A
    J Hazard Mater; 2006 Apr; 131(1-3):103-11. PubMed ID: 16337742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Separation of Chalcopyrite from Pyrite Using Sodium Humate: Flotation Behavior and Adsorption Mechanism.
    Sun D; Li M; Fu Y; Pan Z; Cui R; Wang D; Zhang M; Yao W
    ACS Omega; 2023 Nov; 8(47):45129-45136. PubMed ID: 38046350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density Functional Theory and XPS Studies of the Adsorption of Cyanide on Chalcopyrite Surfaces.
    Nie Q; Wang M; Qiu T; Qiu X
    ACS Omega; 2020 Sep; 5(36):22778-22785. PubMed ID: 32954125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.