These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 31174056)
1. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces. Brusseau ML; Van Glubt S Water Res; 2019 Sep; 161():17-26. PubMed ID: 31174056 [TBL] [Abstract][Full Text] [Related]
2. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients. Brusseau ML Water Res; 2019 Apr; 152():148-158. PubMed ID: 30665161 [TBL] [Abstract][Full Text] [Related]
3. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions. Brusseau ML; Van Glubt S Chemosphere; 2021 Oct; 281():130829. PubMed ID: 33992851 [TBL] [Abstract][Full Text] [Related]
4. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media. Huang D; Saleem H; Guo B; Brusseau ML Sci Total Environ; 2022 Feb; 806(Pt 2):150595. PubMed ID: 34592291 [TBL] [Abstract][Full Text] [Related]
5. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants. Guo B; Saleem H; Brusseau ML Environ Sci Technol; 2023 May; 57(21):8044-8052. PubMed ID: 37204869 [TBL] [Abstract][Full Text] [Related]
6. QSPR-based prediction of air-water interfacial adsorption coefficients for nonionic PFAS with large headgroups. Brusseau ML Chemosphere; 2023 Nov; 340():139960. PubMed ID: 37633613 [TBL] [Abstract][Full Text] [Related]
7. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media. Van Glubt S; Brusseau ML Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425 [TBL] [Abstract][Full Text] [Related]
8. A fundamental model for calculating interfacial adsorption of complex ionic and nonionic PFAS mixtures in the presence of mixed salts. Gao Y; Le ST; Kibbey TCG; Glamore W; O'Carroll DM Environ Sci Process Impacts; 2023 Nov; 25(11):1830-1838. PubMed ID: 36987664 [TBL] [Abstract][Full Text] [Related]
9. PFAS transport under lower water-saturation conditions characterized with instrumented-column systems. Bigler M; He X; Brusseau ML Water Res; 2024 Aug; 260():121922. PubMed ID: 38878314 [TBL] [Abstract][Full Text] [Related]
10. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces. Brusseau ML; Guo B Chemosphere; 2022 Sep; 302():134938. PubMed ID: 35568214 [TBL] [Abstract][Full Text] [Related]
11. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients. Brusseau ML Water Res; 2021 Feb; 190():116778. PubMed ID: 33387950 [TBL] [Abstract][Full Text] [Related]
12. The influence of solution chemistry on air-water interfacial adsorption and transport of PFOA in unsaturated porous media. Lyu Y; Brusseau ML Sci Total Environ; 2020 Apr; 713():136744. PubMed ID: 32019053 [TBL] [Abstract][Full Text] [Related]
13. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media. Brusseau ML; Guo B; Huang D; Yan N; Lyu Y Water Res; 2021 Sep; 202():117405. PubMed ID: 34273774 [TBL] [Abstract][Full Text] [Related]
14. Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media. Ji Y; Yan N; Brusseau ML; Guo B; Zheng X; Dai M; Liu H; Li X Environ Sci Technol; 2021 Aug; 55(15):10480-10490. PubMed ID: 34288652 [TBL] [Abstract][Full Text] [Related]
15. Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation. Buckley T; Karanam K; Han H; Vo HNP; Shukla P; Firouzi M; Rudolph V Water Res; 2023 Feb; 230():119532. PubMed ID: 36584659 [TBL] [Abstract][Full Text] [Related]
16. Air-water interfacial adsorption coefficients for PFAS when present as a multi-component mixture. Silva JAK; Martin WA; McCray JE J Contam Hydrol; 2021 Jan; 236():103731. PubMed ID: 33183849 [TBL] [Abstract][Full Text] [Related]
17. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. Brusseau ML Sci Total Environ; 2018 Feb; 613-614():176-185. PubMed ID: 28915454 [TBL] [Abstract][Full Text] [Related]
18. Predicting the impact of salt mixtures on the air-water interfacial behavior of PFAS. Le ST; Gao Y; Kibbey TCG; Glamore WC; O'Carroll DM Sci Total Environ; 2022 May; 819():151987. PubMed ID: 34843785 [TBL] [Abstract][Full Text] [Related]
19. Uptake of Poly- and Perfluoroalkyl Substances at the Air-Water Interface. Schaefer CE; Culina V; Nguyen D; Field J Environ Sci Technol; 2019 Nov; 53(21):12442-12448. PubMed ID: 31577432 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive retention model for PFAS transport in subsurface systems. Brusseau ML; Yan N; Van Glubt S; Wang Y; Chen W; Lyu Y; Dungan B; Carroll KC; Holguin FO Water Res; 2019 Jan; 148():41-50. PubMed ID: 30343197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]