BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31174056)

  • 1. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces.
    Brusseau ML; Van Glubt S
    Water Res; 2019 Sep; 161():17-26. PubMed ID: 31174056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2019 Apr; 152():148-158. PubMed ID: 30665161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions.
    Brusseau ML; Van Glubt S
    Chemosphere; 2021 Oct; 281():130829. PubMed ID: 33992851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media.
    Huang D; Saleem H; Guo B; Brusseau ML
    Sci Total Environ; 2022 Feb; 806(Pt 2):150595. PubMed ID: 34592291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants.
    Guo B; Saleem H; Brusseau ML
    Environ Sci Technol; 2023 May; 57(21):8044-8052. PubMed ID: 37204869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSPR-based prediction of air-water interfacial adsorption coefficients for nonionic PFAS with large headgroups.
    Brusseau ML
    Chemosphere; 2023 Nov; 340():139960. PubMed ID: 37633613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media.
    Van Glubt S; Brusseau ML
    Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fundamental model for calculating interfacial adsorption of complex ionic and nonionic PFAS mixtures in the presence of mixed salts.
    Gao Y; Le ST; Kibbey TCG; Glamore W; O'Carroll DM
    Environ Sci Process Impacts; 2023 Nov; 25(11):1830-1838. PubMed ID: 36987664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces.
    Brusseau ML; Guo B
    Chemosphere; 2022 Sep; 302():134938. PubMed ID: 35568214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients.
    Brusseau ML
    Water Res; 2021 Feb; 190():116778. PubMed ID: 33387950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of solution chemistry on air-water interfacial adsorption and transport of PFOA in unsaturated porous media.
    Lyu Y; Brusseau ML
    Sci Total Environ; 2020 Apr; 713():136744. PubMed ID: 32019053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media.
    Brusseau ML; Guo B; Huang D; Yan N; Lyu Y
    Water Res; 2021 Sep; 202():117405. PubMed ID: 34273774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of a Hydrocarbon Surfactant on the Retention and Transport of Perfluorooctanoic Acid in Saturated and Unsaturated Porous Media.
    Ji Y; Yan N; Brusseau ML; Guo B; Zheng X; Dai M; Liu H; Li X
    Environ Sci Technol; 2021 Aug; 55(15):10480-10490. PubMed ID: 34288652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation.
    Buckley T; Karanam K; Han H; Vo HNP; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Feb; 230():119532. PubMed ID: 36584659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air-water interfacial adsorption coefficients for PFAS when present as a multi-component mixture.
    Silva JAK; Martin WA; McCray JE
    J Contam Hydrol; 2021 Jan; 236():103731. PubMed ID: 33183849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface.
    Brusseau ML
    Sci Total Environ; 2018 Feb; 613-614():176-185. PubMed ID: 28915454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the impact of salt mixtures on the air-water interfacial behavior of PFAS.
    Le ST; Gao Y; Kibbey TCG; Glamore WC; O'Carroll DM
    Sci Total Environ; 2022 May; 819():151987. PubMed ID: 34843785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PFAS transport under lower water-saturation conditions characterized with instrumented-column systems.
    Bigler M; He X; Brusseau ML
    Water Res; 2024 Jun; 260():121922. PubMed ID: 38878314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of Poly- and Perfluoroalkyl Substances at the Air-Water Interface.
    Schaefer CE; Culina V; Nguyen D; Field J
    Environ Sci Technol; 2019 Nov; 53(21):12442-12448. PubMed ID: 31577432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive retention model for PFAS transport in subsurface systems.
    Brusseau ML; Yan N; Van Glubt S; Wang Y; Chen W; Lyu Y; Dungan B; Carroll KC; Holguin FO
    Water Res; 2019 Jan; 148():41-50. PubMed ID: 30343197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.