BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31174056)

  • 21. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances.
    Brusseau ML
    Environ Pollut; 2019 Nov; 254(Pt B):113102. PubMed ID: 31491699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new framework for modeling the effect of salt on interfacial adsorption of PFAS in environmental systems.
    Le ST; Gao Y; Kibbey TCG; Glamore WC; O'Carroll DM
    Sci Total Environ; 2021 Nov; 796():148893. PubMed ID: 34265607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of methods to estimate air-water interfacial areas for evaluating PFAS transport in the vadose zone.
    Silva JAK; Šimůnek J; McCray JE
    J Contam Hydrol; 2022 May; 247():103984. PubMed ID: 35279485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption of PFOA at the Air-Water Interface during Transport in Unsaturated Porous Media.
    Lyu Y; Brusseau ML; Chen W; Yan N; Fu X; Lin X
    Environ Sci Technol; 2018 Jul; 52(14):7745-7753. PubMed ID: 29944343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calculating PFAS interfacial adsorption as a function of salt concentration using model parameters determined from chemical structure.
    Le ST; Gao Y; Kibbey TCG; O'Carroll DM
    Sci Total Environ; 2022 Nov; 848():157663. PubMed ID: 35907553
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining air-water interfacial areas for the retention and transport of PFAS and other interfacially active solutes in unsaturated porous media.
    Brusseau ML
    Sci Total Environ; 2023 Aug; 884():163730. PubMed ID: 37120024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Residual Nonaqueous-Phase Liquids (NAPLs) on the Transport and Retention of Perfluoroalkyl Substances.
    Liao S; Arshadi M; Woodcock MJ; Saleeba ZSSL; Pinchbeck D; Liu C; Cápiro NL; Abriola LM; Pennell KD
    Environ Sci Technol; 2022 Jun; 56(12):7976-7985. PubMed ID: 35675453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Air-water interfacial areas relevant for transport of per and poly-fluoroalkyl substances.
    Brusseau ML; Guo B
    Water Res; 2021 Dec; 207():117785. PubMed ID: 34731664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Air-water interfacial adsorption of C4-C10 perfluorocarboxylic acids during transport in unsaturated porous media.
    Lyu Y; Wang B; Du X; Guo B; Brusseau ML
    Sci Total Environ; 2022 Jul; 831():154905. PubMed ID: 35364184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using foam fractionation to estimate PFAS air-water interface adsorption behaviour at ng/L and µg/L concentrations.
    Buckley T; Vuong T; Karanam K; Vo PHN; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Jul; 239():120028. PubMed ID: 37209512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media.
    Abraham JEF; Mumford KG; Patch DJ; Weber KP
    Environ Sci Technol; 2022 Nov; 56(22):15489-15498. PubMed ID: 36279175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex Droplets.
    Trinh V; Malloy CS; Durkin TJ; Gadh A; Savagatrup S
    ACS Sens; 2022 May; 7(5):1514-1523. PubMed ID: 35442626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic ion-exchange (MIEX) resin for perfluorinated alkylsubstance (PFAS) removal in groundwater: Roles of atomic charges for adsorption.
    Park M; Daniels KD; Wu S; Ziska AD; Snyder SA
    Water Res; 2020 Aug; 181():115897. PubMed ID: 32450335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulating PFAS transport influenced by rate-limited multi-process retention.
    Brusseau ML
    Water Res; 2020 Jan; 168():115179. PubMed ID: 31639593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics.
    Park M; Wu S; Lopez IJ; Chang JY; Karanfil T; Snyder SA
    Water Res; 2020 Mar; 170():115364. PubMed ID: 31812815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting Concentration- and Ionic-Strength-Dependent Air-Water Interfacial Partitioning Parameters of PFASs Using Quantitative Structure-Property Relationships (QSPRs).
    Stults JF; Choi YJ; Rockwell C; Schaefer CE; Nguyen DD; Knappe DRU; Illangasekare TH; Higgins CP
    Environ Sci Technol; 2023 Apr; 57(13):5203-5215. PubMed ID: 36962006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrophobic Sorption Properties of an Extended Series of Anionic Per- and Polyfluoroalkyl Substances Characterized by C
    Endo S; Matsuzawa S
    Environ Sci Technol; 2024 Apr; 58(17):7628-7635. PubMed ID: 38646668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of perfluoroalkyl substances (PFASs) in aquatic plant-based systems: From soil adsorption and plant uptake to effects on microbial community.
    Zhang DQ; Wang M; He Q; Niu X; Liang Y
    Environ Pollut; 2020 Feb; 257():113575. PubMed ID: 31733970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A group-contribution model for predicting the physicochemical behavior of PFAS components for understanding environmental fate.
    Le ST; Kibbey TCG; Weber KP; Glamore WC; O'Carroll DM
    Sci Total Environ; 2021 Apr; 764():142882. PubMed ID: 33127153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of pH, surface charge and soil properties on the solid-solution partitioning of perfluoroalkyl substances (PFASs) in a wide range of temperate soils.
    Campos-Pereira H; Kleja DB; Ahrens L; Enell A; Kikuchi J; Pettersson M; Gustafsson JP
    Chemosphere; 2023 Apr; 321():138133. PubMed ID: 36791815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.