These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31174072)

  • 21. Flow-electrode capacitive deionization: A review and new perspectives.
    Yang F; He Y; Rosentsvit L; Suss ME; Zhang X; Gao T; Liang P
    Water Res; 2021 Jul; 200():117222. PubMed ID: 34029869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural/Compositional-Tailoring of Nickel Hexacyanoferrate Electrodes for Highly Efficient Capacitive Deionization.
    Bao Y; Hao J; Zhang S; Zhu D; Li F
    Small; 2023 Aug; 19(34):e2300384. PubMed ID: 37116117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of Selective Ion Removal in Membrane Capacitive Deionization for Water Softening.
    Wang L; Lin S
    Environ Sci Technol; 2019 May; 53(10):5797-5804. PubMed ID: 31013430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing the Ion-Size-Based Selectivity of Capacitive Deionization Electrodes.
    Guyes EN; Malka T; Suss ME
    Environ Sci Technol; 2019 Jul; 53(14):8447-8454. PubMed ID: 31187620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.
    Pugazhenthiran N; Sen Gupta S; Prabhath A; Manikandan M; Swathy JR; Raman VK; Pradeep T
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20156-63. PubMed ID: 26305260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications.
    Seo SJ; Jeon H; Lee JK; Kim GY; Park D; Nojima H; Lee J; Moon SH
    Water Res; 2010 Apr; 44(7):2267-75. PubMed ID: 19897222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective capacitive removal of Pb
    Tang C; Yu Y; Shi Y; Li Y; Zhang Y; Xue J
    Phys Chem Chem Phys; 2023 Jul; 25(27):18454-18464. PubMed ID: 37401748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe
    Bharath G; Rambabu K; Banat F; Hai A; Arangadi AF; Ponpandian N
    Sci Total Environ; 2019 Nov; 691():713-726. PubMed ID: 31325869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of Humic Acid Fouling on Capacitive and Insertion Electrodes for Electrochemical Desalination.
    Liu X; Whitacre JF; Mauter MS
    Environ Sci Technol; 2018 Nov; 52(21):12633-12641. PubMed ID: 30240196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of the electronegativity on the electrosorption selectivity of anions during capacitive deionization.
    Sun Z; Chai L; Liu M; Shu Y; Li Q; Wang Y; Qiu D
    Chemosphere; 2018 Mar; 195():282-290. PubMed ID: 29272797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the electrosorption selectivity and recovery of indium ions with capacitive deionization in acidic solution.
    Shen YY; Wu SW; Hou CH
    J Colloid Interface Sci; 2021 Mar; 586():819-829. PubMed ID: 33198978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of a manganese dioxide/carbon fiber electrode for electrosorptive removal of copper ions from water.
    Hu C; Liu F; Lan H; Liu H; Qu J
    J Colloid Interface Sci; 2015 May; 446():359-65. PubMed ID: 25617054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reuse solution of hardness industrial circulating cooling water: Targeted ion-selective electro-adsorption by functionalized electrode.
    Tang H; Bian Z; Zhang L; Wang H
    Chemosphere; 2021 Oct; 280():130748. PubMed ID: 33975243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cation Selectivity in Capacitive Deionization: Elucidating the Role of Pore Size, Electrode Potential, and Ion Dehydration.
    Cerón MR; Aydin F; Hawks SA; Oyarzun DI; Loeb CK; Deinhart A; Zhan C; Pham TA; Stadermann M; Campbell PG
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42644-42652. PubMed ID: 32869974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced capacitive deionization for ion selective separation: Insights into mechanism over a functional classification.
    Sun X; Hao Z; Zhou X; Chen J; Zhang Y
    Chemosphere; 2024 Jan; 346():140601. PubMed ID: 37918536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asymmetrical removal of sodium and chloride in flow-through capacitive deionization.
    Algurainy Y; Call DF
    Water Res; 2020 Sep; 183():116044. PubMed ID: 32721704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of heavy metal ions by capacitive deionization: Effect of surface modification on ions adsorption.
    Kyaw HH; Myint MTZ; Al-Harthi S; Al-Abri M
    J Hazard Mater; 2020 Mar; 385():121565. PubMed ID: 31732340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zwitterionic Polymer Modified Porous Carbon for High-Performance and Antifouling Capacitive Desalination.
    Zhang P; Fritz PA; Schroën K; Duan H; Boom RM; Chan-Park MB
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33564-33573. PubMed ID: 30188680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of redox potential on the removal characteristic of divalent cations during activated carbon-based capacitive deionization.
    Lee N; Liu ML; Wu MC; Chen TH; Hou CH
    Chemosphere; 2021 Jul; 274():129762. PubMed ID: 33548648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.