BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31174076)

  • 1. Skeletal myotube formation enhanced through fibrillated collagen nanofibers coated on a 3D-printed polycaprolactone surface.
    Chae S; Lee J; Kim G
    Colloids Surf B Biointerfaces; 2019 Sep; 181():408-415. PubMed ID: 31174076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation.
    Yeo M; Kim G
    Carbohydr Polym; 2019 Nov; 223():115041. PubMed ID: 31427026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.
    Chen MC; Sun YC; Chen YH
    Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation.
    Ku SH; Lee SH; Park CB
    Biomaterials; 2012 Sep; 33(26):6098-104. PubMed ID: 22681977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen nanofibre anisotropy induces myotube differentiation and acetylcholine receptor clustering.
    Kung FH; Sillitti D; Shrirao AB; Shreiber DI; Firestein BL
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e2010-e2019. PubMed ID: 29266875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering.
    Ghosal K; Manakhov A; Zajíčková L; Thomas S
    AAPS PharmSciTech; 2017 Jan; 18(1):72-81. PubMed ID: 26883261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coating of 3D printed PCL/TCP scaffolds using homogenized-fibrillated collagen.
    Tabatabaei F; Gelin A; Rasoulianboroujeni M; Tayebi L
    Colloids Surf B Biointerfaces; 2022 Sep; 217():112670. PubMed ID: 35779329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts.
    Zhang YZ; Venugopal J; Huang ZM; Lim CT; Ramakrishna S
    Biomacromolecules; 2005; 6(5):2583-9. PubMed ID: 16153095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M; Bahrami SH
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The construction of three-dimensional composite fibrous macrostructures with nanotextures for biomedical applications.
    Song J; Gao H; Zhu G; Cao X; Shi X; Wang Y
    Biofabrication; 2016 Aug; 8(3):035009. PubMed ID: 27563025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen-PCL sheath-core bicomponent electrospun scaffolds increase osteogenic differentiation and calcium accretion of human adipose-derived stem cells.
    Haslauer CM; Moghe AK; Osborne JA; Gupta BS; Loboa EG
    J Biomater Sci Polym Ed; 2011; 22(13):1695-712. PubMed ID: 20836922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development.
    Guex AG; Kocher FM; Fortunato G; Körner E; Hegemann D; Carrel TP; Tevaearai HT; Giraud MN
    Acta Biomater; 2012 Apr; 8(4):1481-9. PubMed ID: 22266032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes.
    Choi JS; Lee SJ; Christ GJ; Atala A; Yoo JJ
    Biomaterials; 2008 Jul; 29(19):2899-906. PubMed ID: 18400295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of Plasma Treated Electrospun Polycaprolactone (PCL) Nanofiber Scaffold for Bone Tissue Engineering.
    Ko YM; Choi DY; Jung SC; Kim BH
    J Nanosci Nanotechnol; 2015 Jan; 15(1):192-5. PubMed ID: 26328328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-Instructive Graphene-Containing Nanocomposites Induce Multinucleated Myotube Formation.
    Patel A; Xue Y; Mukundan S; Rohan LC; Sant V; Stolz DB; Sant S
    Ann Biomed Eng; 2016 Jun; 44(6):2036-48. PubMed ID: 26983841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myogenic differentiation of human myoblasts and Mesenchymal stromal cells under GDF11 on NPoly-ɛ-caprolactone-collagen I-Polyethylene-nanofibers.
    Cai A; Schneider P; Zheng ZM; Beier JP; Himmler M; Schubert DW; Weisbach V; Horch RE; Arkudas A
    BMC Mol Cell Biol; 2023 May; 24(1):18. PubMed ID: 37189080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone, β-tricalcium phosphate, and collagen nanofibers: fabrication, physical properties, and in vitro cell activity for bone tissue regeneration.
    Yeo M; Lee H; Kim G
    Biomacromolecules; 2011 Feb; 12(2):502-10. PubMed ID: 21189025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.