These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 31174085)
1. Evolutionary engineering of Lactobacillus pentosus improves lactic acid productivity from xylose-rich media at low pH. Cubas-Cano E; González-Fernández C; Tomás-Pejó E Bioresour Technol; 2019 Sep; 288():121540. PubMed ID: 31174085 [TBL] [Abstract][Full Text] [Related]
2. Lactobacillus pentosus CECT 4023 T co-utilizes glucose and xylose to produce lactic acid from wheat straw hydrolysate: Anaerobiosis as a key factor. Cubas-Cano E; González-Fernández C; Ballesteros M; Tomás-Pejó E Biotechnol Prog; 2019 Jan; 35(1):e2739. PubMed ID: 30378762 [TBL] [Abstract][Full Text] [Related]
3. Lactic acid production from sugarcane bagasse hydrolysates by Lactobacillus pentosus: Integrating xylose and glucose fermentation. Wischral D; Arias JM; Modesto LF; de França Passos D; Pereira N Biotechnol Prog; 2019 Jan; 35(1):e2718. PubMed ID: 30295001 [TBL] [Abstract][Full Text] [Related]
4. Lactic acid production from food waste hydrolysate by Lactobacillus pentosus: Focus on nitrogen supplementation, initial sugar concentration, pH, and fed-batch fermentation. Lobeda K; Jin Q; Wu J; Zhang W; Huang H J Food Sci; 2022 Jul; 87(7):3071-3083. PubMed ID: 35669993 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of different conditions to enhance the performances of Lactobacillus pentosus OM13 during industrial production of Spanish-style table olives. Martorana A; Alfonzo A; Gaglio R; Settanni L; Corona O; La Croce F; Vagnoli P; Caruso T; Moschetti G; Francesca N Food Microbiol; 2017 Feb; 61():150-158. PubMed ID: 27697165 [TBL] [Abstract][Full Text] [Related]
6. Efficient utilization of hydrolysates from steam-exploded gardening residues for lactic acid production by optimization of enzyme addition and pH control. Cubas-Cano E; González-Fernández C; Ballesteros I; Tomás-Pejó E Waste Manag; 2020 Apr; 107():235-243. PubMed ID: 32325410 [TBL] [Abstract][Full Text] [Related]
7. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation. Hu J; Lin Y; Zhang Z; Xiang T; Mei Y; Zhao S; Liang Y; Peng N Bioresour Technol; 2016 Aug; 214():74-80. PubMed ID: 27128191 [TBL] [Abstract][Full Text] [Related]
8. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Garde A; Jonsson G; Schmidt AS; Ahring BK Bioresour Technol; 2002 Feb; 81(3):217-23. PubMed ID: 11800488 [TBL] [Abstract][Full Text] [Related]
9. Parametric optimization and kinetic study of l-lactic acid production by homologous batch fermentation of Lactobacillus pentosus cells. Wang J; Huang J; Jiang S; Zhang J; Zhang Q; Ning Y; Fang M; Liu S Biotechnol Appl Biochem; 2021 Aug; 68(4):809-822. PubMed ID: 32738151 [TBL] [Abstract][Full Text] [Related]
10. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose. Lawford HG; Rousseau JD Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of D-lactic acid production from a mixed glucose and xylose substrate by the Escherichia coli strain JH15 devoid of the glucose effect. Lu H; Zhao X; Wang Y; Ding X; Wang J; Garza E; Manow R; Iverson A; Zhou S BMC Biotechnol; 2016 Feb; 16():19. PubMed ID: 26895857 [TBL] [Abstract][Full Text] [Related]
12. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Zhang Y; Vadlani PV; Kumar A; Hardwidge PR; Govind R; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970 [TBL] [Abstract][Full Text] [Related]
13. Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic l-lactic acid fermentation. Qiu Z; Gao Q; Bao J Bioresour Technol; 2018 Feb; 249():9-15. PubMed ID: 29035728 [TBL] [Abstract][Full Text] [Related]
14. LP309 a new strain of Lactiplantibacillus pentosus that improves the lactic fermentation of Spanish-style table olives. Rodríguez-Gómez F; Valero A; Vives Lara E; Marín A; Ramírez EM J Food Sci; 2023 Dec; 88(12):5191-5202. PubMed ID: 37872810 [TBL] [Abstract][Full Text] [Related]
15. Minerals and organic nitrogen present in grape marc hydrolyzates enhance xylose consumption by Lactobacillus pentosus. Rivera OM; Torrado AM; Moldes AB; Domínguez JM Appl Biochem Biotechnol; 2009 Feb; 152(2):262-74. PubMed ID: 18581267 [TBL] [Abstract][Full Text] [Related]
16. Production of L-lactic acid from a mixture of xylose and glucose by co-cultivation of lactic acid bacteria. Taniguchi M; Tokunaga T; Horiuchi K; Hoshino K; Sakai K; Tanaka T Appl Microbiol Biotechnol; 2004 Dec; 66(2):160-5. PubMed ID: 15558273 [TBL] [Abstract][Full Text] [Related]
17. Optimization of Initial Cation Concentrations for L-Lactic Acid Production from Fructose by Lactobacillus pentosus Cells. Wang J; Jiang S; Huang J; Guo H; Bi X; Hou M; Chen X; Hou S; Lin H; Lu Y; Lv H; Qiao J; Yang R; Liu S Appl Biochem Biotechnol; 2021 May; 193(5):1496-1512. PubMed ID: 33484444 [TBL] [Abstract][Full Text] [Related]
18. Homo-D-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Yoshida S; Okano K; Tanaka T; Ogino C; Kondo A Appl Microbiol Biotechnol; 2011 Oct; 92(1):67-76. PubMed ID: 21643702 [TBL] [Abstract][Full Text] [Related]
19. Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Bustos G; Moldes AB; Cruz JM; Domínguez JM Biotechnol Prog; 2005; 21(3):793-8. PubMed ID: 15932258 [TBL] [Abstract][Full Text] [Related]
20. Production of lactic acid from pulp mill solid waste and xylose using Lactobacillus delbrueckii (NRRL B445). Thomas S Appl Biochem Biotechnol; 2000; 84-86():455-68. PubMed ID: 10849812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]