These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31174113)
41. [Spatial Simulation of Black Carbon Concentrations Based on a Land Use Regression Model and Mobile Monitoring over Shanghai, China]. Peng X; She QN; Long LB; Liu M; Xu Q; Wei N; Zhou TY Huan Jing Ke Xue; 2017 Nov; 38(11):4454-4462. PubMed ID: 29965387 [TBL] [Abstract][Full Text] [Related]
42. Air Pollution and Lung Function in Dutch Children: A Comparison of Exposure Estimates and Associations Based on Land Use Regression and Dispersion Exposure Modeling Approaches. Wang M; Gehring U; Hoek G; Keuken M; Jonkers S; Beelen R; Eeftens M; Postma DS; Brunekreef B Environ Health Perspect; 2015 Aug; 123(8):847-51. PubMed ID: 25839747 [TBL] [Abstract][Full Text] [Related]
43. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment. Shi Y; Lau KK; Ng E Environ Res; 2017 Aug; 157():17-29. PubMed ID: 28501653 [TBL] [Abstract][Full Text] [Related]
44. Spatiotemporal modeling of PM Chen L; Gao S; Zhang H; Sun Y; Ma Z; Vedal S; Mao J; Bai Z Environ Int; 2018 Jul; 116():300-307. PubMed ID: 29730578 [TBL] [Abstract][Full Text] [Related]
45. GIS interpolation is key in assessing spatial and temporal bioremediation of groundwater arsenic contamination. Fischer A; Lee MK; Ojeda AS; Rogers SR J Environ Manage; 2021 Feb; 280():111683. PubMed ID: 33246756 [TBL] [Abstract][Full Text] [Related]
46. Modelling the vertical gradient of nitrogen dioxide in an urban area. Eeftens M; Odabasi D; Flückiger B; Davey M; Ineichen A; Feigenwinter C; Tsai MY Sci Total Environ; 2019 Feb; 650(Pt 1):452-458. PubMed ID: 30199689 [TBL] [Abstract][Full Text] [Related]
47. Simulation of the distribution of main atmospheric pollutants and the influence of land use on them in central urban area of Nanchang City, China. Liang ZF; Chen WB; Zheng J; Lu TJ Ying Yong Sheng Tai Xue Bao; 2019 Mar; 30(3):1005-1014. PubMed ID: 30912394 [TBL] [Abstract][Full Text] [Related]
48. [Application of the LUR Model in the Prediction of Spatial Distributions of Soil Heavy Metals]. Zeng JJ; Shen CZ; Zhou SL; Lu CF; Jin ZF; Zhu Y Huan Jing Ke Xue; 2018 Jan; 39(1):371-378. PubMed ID: 29965704 [TBL] [Abstract][Full Text] [Related]
49. Land use regression modelling of PM Shi T; Hu Y; Liu M; Li C; Zhang C; Liu C Sci Total Environ; 2020 Nov; 743():140744. PubMed ID: 32663682 [TBL] [Abstract][Full Text] [Related]
50. Development of land use regression models for PM Huang L; Zhang C; Bi J Environ Res; 2017 Oct; 158():542-552. PubMed ID: 28715783 [TBL] [Abstract][Full Text] [Related]
51. Development of temporally refined land-use regression models predicting daily household-level air pollution in a panel study of lung function among asthmatic children. Johnson M; Macneill M; Grgicak-Mannion A; Nethery E; Xu X; Dales R; Rasmussen P; Wheeler A J Expo Sci Environ Epidemiol; 2013; 23(3):259-67. PubMed ID: 23532094 [TBL] [Abstract][Full Text] [Related]
52. Estimate annual and seasonal PM Miri M; Ghassoun Y; Dovlatabadi A; Ebrahimnejad A; Löwner MO Ecotoxicol Environ Saf; 2019 Jun; 174():137-145. PubMed ID: 30825736 [TBL] [Abstract][Full Text] [Related]
53. Intra-urban variation of ultrafine particles as evaluated by process related land use and pollutant driven regression modelling. Ghassoun Y; Ruths M; Löwner MO; Weber S Sci Total Environ; 2015 Dec; 536():150-160. PubMed ID: 26204051 [TBL] [Abstract][Full Text] [Related]
54. Combining land use regression models and fixed site monitoring to reconstruct spatiotemporal variability of NO Cordioli M; Pironi C; De Munari E; Marmiroli N; Lauriola P; Ranzi A Sci Total Environ; 2017 Jan; 574():1075-1084. PubMed ID: 27672737 [TBL] [Abstract][Full Text] [Related]
55. An innovative land use regression model incorporating meteorology for exposure analysis. Su JG; Brauer M; Ainslie B; Steyn D; Larson T; Buzzelli M Sci Total Environ; 2008 Feb; 390(2-3):520-9. PubMed ID: 18048083 [TBL] [Abstract][Full Text] [Related]
56. Using MAIAC AOD to verify the PM Li R; Ma T; Xu Q; Song X Environ Pollut; 2018 Dec; 243(Pt A):501-509. PubMed ID: 30216882 [TBL] [Abstract][Full Text] [Related]
57. Spatial distribution prediction of soil As in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data. Liu G; Zhou X; Li Q; Shi Y; Guo G; Zhao L; Wang J; Su Y; Zhang C Environ Pollut; 2020 Dec; 267():115631. PubMed ID: 33254608 [TBL] [Abstract][Full Text] [Related]
58. Systematic evaluation of land use regression models for NO₂. Wang M; Beelen R; Eeftens M; Meliefste K; Hoek G; Brunekreef B Environ Sci Technol; 2012 Apr; 46(8):4481-9. PubMed ID: 22435498 [TBL] [Abstract][Full Text] [Related]
59. Use of generalized additive models and cokriging of spatial residuals to improve land-use regression estimates of nitrogen oxides in Southern California. Li L; Wu J; Wilhelm M; Ritz B Atmos Environ (1994); 2012 Aug; 55():220-228. PubMed ID: 23439926 [TBL] [Abstract][Full Text] [Related]
60. Comparison of spatiotemporal prediction models of daily exposure of individuals to ambient nitrogen dioxide and ozone in Montreal, Canada. Buteau S; Hatzopoulou M; Crouse DL; Smargiassi A; Burnett RT; Logan T; Cavellin LD; Goldberg MS Environ Res; 2017 Jul; 156():201-230. PubMed ID: 28359040 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]