These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31174143)

  • 1. The speciation, transformation kinetics and fate of spiked Pu (IV) in highly saline groundwater.
    Zhou X; Dang H; Han X; Li W; Wang Y; Wang W; Chai N
    J Contam Hydrol; 2019 Aug; 225():103505. PubMed ID: 31174143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Source-dependent and source-independent controls on plutonium oxidation state and colloid associations in groundwater.
    Buesseler KO; Kaplan DI; Dai M; Pike S
    Environ Sci Technol; 2009 Mar; 43(5):1322-8. PubMed ID: 19350898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinetic stability of colloid-associated plutonium: settling characteristics and species transformation.
    Xie J; Lu J; Zhou X; Wang X; Li M; Du L; Zhou G
    Chemosphere; 2012 May; 87(8):925-31. PubMed ID: 22349062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion stability and electrokinetic properties of intrinsic plutonium colloids: implications for subsurface transport.
    Abdel-Fattah AI; Zhou D; Boukhalfa H; Tarimala S; Ware SD; Keller AA
    Environ Sci Technol; 2013 Jun; 47(11):5626-34. PubMed ID: 23675849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site.
    Dai M; Buesseler KO; Pike SM
    J Contam Hydrol; 2005 Feb; 76(3-4):167-89. PubMed ID: 15683879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plutonium Redox Transformation in the Presence of Iron, Organic Matter, and Hydroxyl Radicals: Kinetics and Mechanistic Insights.
    Pan C; Jiao Y; Kersting AB; Zavarin M
    Environ Sci Technol; 2021 Feb; 55(3):1800-1810. PubMed ID: 33471518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plutonium partitioning in water-granite and water-α-FeOOH systems: from a viewpoint of a three-phase system.
    Lin J; Dang H; Xie J; Zhou G; Li M; Zhang J
    Environ Sci Process Impacts; 2015 Sep; 17(9):1672-9. PubMed ID: 26244590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of plutonium speciation on the distribution coefficients in a sediment-sea water system, and radiological assessment of doses to humans.
    Skipperud L; Oughton DH; Salbu B
    Health Phys; 2000 Aug; 79(2):147-53. PubMed ID: 10910384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption and redox speciation of plutonium at the illite surface under highly saline conditions.
    Marsac R; Banik NL; Lützenkirchen J; Diascorn A; Bender K; Marquardt CM; Geckeis H
    J Colloid Interface Sci; 2017 Jan; 485():59-64. PubMed ID: 27643471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Goethite colloid enhanced Pu transport through a single saturated fracture in granite.
    Lin J; Dang H; Xie J; Li M; Zhou G; Zhang J; Zhang H; Yi X
    J Contam Hydrol; 2014 Aug; 164():251-8. PubMed ID: 25016587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sources and migration of plutonium in groundwater at the Savannah River site.
    Dai M; Kelley JM; Buesseler KO
    Environ Sci Technol; 2002 Sep; 36(17):3690-9. PubMed ID: 12322739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of Pu speciation on distribution coefficients in Mayak soil.
    Skipperud L; Oughton D; Salbu B
    Sci Total Environ; 2000 Aug; 257(2-3):81-93. PubMed ID: 10989919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of ²³⁹Pu and ⁹⁰Sr to organic colloids in soil solutions: evidence from a field experiment.
    Chawla F; Steinmann P; Loizeau JL; Hassouna M; Froidevaux P
    Environ Sci Technol; 2010 Nov; 44(22):8509-14. PubMed ID: 20964354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloid-associated plutonium transport in the vadose zone sediments at Lop Nor.
    Xie J; Wang X; Lu J; Zhou X; Lin J; Li M; Xu Q; Du L; Liu Y; Zhou G
    J Environ Radioact; 2013 Feb; 116():76-83. PubMed ID: 23103579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal Alteration of Nuclear Melt Glass, Colloid Formation, and Plutonium Mobilization at the Nevada National Security Site, U.S.A.
    Zavarin M; Zhao P; Joseph C; Begg JD; Boggs MA; Dai Z; Kersting AB
    Environ Sci Technol; 2019 Jul; 53(13):7363-7370. PubMed ID: 31192587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of Plutonium onto Several Natural Sediments.
    Yu J; Zhang Q
    Health Phys; 2022 Feb; 122(2):326-332. PubMed ID: 34995224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-phase extraction of plutonium in various oxidation states from simulated groundwater using
    Perevalov SA; Malofeeva GI; Kuzovkina EV; Spivakov BY
    J Radioanal Nucl Chem; 2013; 295(1):1-6. PubMed ID: 26224927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular interfacial reactions between Pu(VI) and manganese oxide minerals manganite and hausmannite.
    Shaughnessy DA; Nitsche H; Booth CH; Shuh DK; Waychunas GA; Wilson RE; Gill H; Cantrell KJ; Serne RJ
    Environ Sci Technol; 2003 Aug; 37(15):3367-74. PubMed ID: 12966983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of plutonium(IV) oxide as hydrolysed clusters in aqueous suspensions.
    Ekberg C; Larsson K; Skarnemark G; Ödegaard-Jensen A; Persson I
    Dalton Trans; 2013 Feb; 42(6):2035-40. PubMed ID: 23175453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical speciation and association of plutonium with bacteria, kaolinite clay, and their mixture.
    Ohnuki T; Yoshida T; Ozaki T; Kozai N; Sakamoto F; Nankawa T; Suzuki Y; Francis AJ
    Environ Sci Technol; 2007 May; 41(9):3134-9. PubMed ID: 17539516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.