These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 31174272)

  • 1. Towards High-Throughput Chemobehavioural Phenomics in Neuropsychiatric Drug Discovery.
    Henry J; Wlodkowic D
    Mar Drugs; 2019 Jun; 17(6):. PubMed ID: 31174272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish.
    Kokel D; Peterson RT
    Brief Funct Genomic Proteomic; 2008 Nov; 7(6):483-90. PubMed ID: 18784194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of digital video analytics on accuracy of chemobehavioural phenotyping in aquatic toxicology.
    Henry J; Rodriguez A; Wlodkowic D
    PeerJ; 2019; 7():e7367. PubMed ID: 31404436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery.
    Stewart AM; Gerlai R; Kalueff AV
    Front Behav Neurosci; 2015; 9():14. PubMed ID: 25729356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research.
    Kalueff AV; Echevarria DJ; Homechaudhuri S; Stewart AM; Collier AD; Kaluyeva AA; Li S; Liu Y; Chen P; Wang J; Yang L; Mitra A; Pal S; Chaudhuri A; Roy A; Biswas M; Roy D; Podder A; Poudel MK; Katare DP; Mani RJ; Kyzar EJ; Gaikwad S; Nguyen M; Song C;
    Aquat Toxicol; 2016 Jan; 170():297-309. PubMed ID: 26372090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish.
    Bruni G; Lakhani P; Kokel D
    Front Pharmacol; 2014; 5():153. PubMed ID: 25104936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput animal tracking in chemobehavioral phenotyping: Current limitations and future perspectives.
    Henry J; Wlodkowic D
    Behav Processes; 2020 Nov; 180():104226. PubMed ID: 32846185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid behavior-based identification of neuroactive small molecules in the zebrafish.
    Kokel D; Bryan J; Laggner C; White R; Cheung CY; Mateus R; Healey D; Kim S; Werdich AA; Haggarty SJ; Macrae CA; Shoichet B; Peterson RT
    Nat Chem Biol; 2010 Mar; 6(3):231-237. PubMed ID: 20081854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-Organism Cellular Pathology: A Systems Approach to Phenomics.
    Cheng KC; Katz SR; Lin AY; Xin X; Ding Y
    Adv Genet; 2016; 95():89-115. PubMed ID: 27503355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applications of advanced neuro-behavioral analysis strategies in aquatic ecotoxicology.
    Bownik A; Wlodkowic D
    Sci Total Environ; 2021 Jun; 772():145577. PubMed ID: 33770877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes.
    Stewart AM; Grieco F; Tegelenbosch RA; Kyzar EJ; Nguyen M; Kaluyeva A; Song C; Noldus LP; Kalueff AV
    J Neurosci Methods; 2015 Nov; 255():66-74. PubMed ID: 26238728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebrafish models in neuropsychopharmacology and CNS drug discovery.
    Khan KM; Collier AD; Meshalkina DA; Kysil EV; Khatsko SL; Kolesnikova T; Morzherin YY; Warnick JE; Kalueff AV; Echevarria DJ
    Br J Pharmacol; 2017 Jul; 174(13):1925-1944. PubMed ID: 28217866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening the receptorome to discover the molecular targets for plant-derived psychoactive compounds: a novel approach for CNS drug discovery.
    Roth BL; Lopez E; Beischel S; Westkaemper RB; Evans JM
    Pharmacol Ther; 2004 May; 102(2):99-110. PubMed ID: 15163592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and Development of Novel Drugs.
    Erakovic Haber V; Spaventi R
    Prog Mol Subcell Biol; 2017; 55():91-104. PubMed ID: 28238036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery.
    Ravikumar B; Aittokallio T
    Expert Opin Drug Discov; 2018 Feb; 13(2):179-192. PubMed ID: 29233023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marine Biodiscovery Goes Deeper: Using In Vivo Bioassays Based on Model Organisms to Identify Biomedically Relevant Marine Metabolites.
    West KH; Crawford AD
    Planta Med; 2016 Jun; 82(9-10):754-60. PubMed ID: 27191583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropharmacology beyond reductionism - A likely prospect.
    Margineanu DG
    Biosystems; 2016 Mar; 141():1-9. PubMed ID: 26723231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of investigating allelopathic interactions of marine organisms in the discovery and development of cytotoxic compounds.
    Singh A; Thakur NL
    Chem Biol Interact; 2016 Jan; 243():135-47. PubMed ID: 26362501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Next generation zebrafish-based drug discovery and precision medicine].
    Tanaka T; Koiwa J
    Nihon Yakurigaku Zasshi; 2019; 154(2):78-83. PubMed ID: 31406047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Threat Response in Larval Zebrafish.
    Rennekamp AJ
    Methods Mol Biol; 2018; 1787():147-159. PubMed ID: 29736716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.