BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31174295)

  • 1. A Practical Perspective: The Effect of Ligand Conformers on the Negative Image-Based Screening.
    Ahinko M; Kurkinen ST; Niinivehmas SP; Pentikäinen OT; Postila PA
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31174295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative Image-Based Rescoring: Using Cavity Information to Improve Docking Screening.
    Pentikäinen OT; Postila PA
    Methods Mol Biol; 2021; 2266():141-154. PubMed ID: 33759125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative Image-Based Screening: Rigid Docking Using Cavity Information.
    Postila PA; Kurkinen ST; Pentikäinen OT
    Methods Mol Biol; 2021; 2266():125-140. PubMed ID: 33759124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-Enhanced Negative Images Optimized for Docking Rescoring.
    Kurkinen ST; Lehtonen JV; Pentikäinen OT; Postila PA
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Docking Performance Using Negative Image-Based Rescoring.
    Kurkinen ST; Niinivehmas S; Ahinko M; Lätti S; Pentikäinen OT; Postila PA
    Front Pharmacol; 2018; 9():260. PubMed ID: 29632488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Getting Docking into Shape Using Negative Image-Based Rescoring.
    Kurkinen ST; Lätti S; Pentikäinen OT; Postila PA
    J Chem Inf Model; 2019 Aug; 59(8):3584-3599. PubMed ID: 31290660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Cavity-Based Negative Images to Boost Docking Enrichment in Virtual Screening.
    Kurkinen ST; Lehtonen JV; Pentikäinen OT; Postila PA
    J Chem Inf Model; 2022 Feb; 62(4):1100-1112. PubMed ID: 35133138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragment- and negative image-based screening of phosphodiesterase 10A inhibitors.
    Jokinen EM; Postila PA; Ahinko M; Niinivehmas S; Pentikäinen OT
    Chem Biol Drug Des; 2019 Oct; 94(4):1799-1812. PubMed ID: 31260165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual Screening Strategy to Identify Retinoic Acid-Related Orphan Receptor γt Modulators.
    Jokinen EM; Niemeläinen M; Kurkinen ST; Lehtonen JV; Lätti S; Postila PA; Pentikäinen OT; Niinivehmas SP
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix-based Molecular Descriptors for Prospective Virtual Compound Screening.
    Grisoni F; Reker D; Schneider P; Friedrich L; Consonni V; Todeschini R; Koeberle A; Werz O; Schneider G
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27650559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of COX-2 inhibitors via structure-based virtual screening and molecular dynamics simulation.
    Razzaghi-Asl N; Mirzayi S; Mahnam K; Sepehri S
    J Mol Graph Model; 2018 Aug; 83():138-152. PubMed ID: 29936228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Docking of Bioactive Compounds Against BRCA and COX Proteins.
    Prog Drug Res; 2016; 71():181-3. PubMed ID: 26939289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of a potent cyclooxygenase-2 inhibitor, S4, through docking-based pharmacophore screening, in vivo and in vitro estimations.
    Tseng TS; Chuang SM; Hsiao NW; Chen YW; Lee YC; Lin CC; Huang C; Tsai KC
    Mol Biosyst; 2016 Jul; 12(8):2541-51. PubMed ID: 27265567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges.
    Huang SY
    Brief Bioinform; 2018 Sep; 19(5):982-994. PubMed ID: 28334282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of virtual high-throughput screening methods for the identification of phosphodiesterase-5 inhibitors.
    Niinivehmas SP; Virtanen SI; Lehtonen JV; Postila PA; Pentikäinen OT
    J Chem Inf Model; 2011 Jun; 51(6):1353-63. PubMed ID: 21591817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Probing, Screening and Structure-Based Drug Repositioning Insights into the Identification of Potential Cox-2 Inhibitors from Selective Coxibs.
    Bommu UD; Konidala KK; Pamanji R; Yeguvapalli S
    Interdiscip Sci; 2019 Jun; 11(2):153-169. PubMed ID: 29236213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of the NRGsuite and the Molecular Docking Software FlexAID in Computational Drug Discovery and Design.
    Morency LP; Gaudreault F; Najmanovich R
    Methods Mol Biol; 2018; 1762():367-388. PubMed ID: 29594781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular docking, molecular modeling, and molecular dynamics studies of azaisoflavone as dual COX-2 inhibitors and TP receptor antagonists.
    Hadianawala M; Mahapatra AD; Yadav JK; Datta B
    J Mol Model; 2018 Feb; 24(3):69. PubMed ID: 29480373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the benzopyran class of selective COX-2 inhibitors using 3D-QSAR and molecular docking.
    Yadav DK; Saloni ; Sharma P; Misra S; Singh H; Mancera RL; Kim K; Jang C; Kim MH; Pérez-Sánchez H; Choi EH; Kumar S
    Arch Pharm Res; 2018 Dec; 41(12):1178-1189. PubMed ID: 28822076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.