These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31174385)

  • 1. Joint Formation Control with Obstacle Avoidance of Towfish and Multiple Autonomous Underwater Vehicles Based on Graph Theory and the Null-Space-Based Method.
    Pang SK; Li YH; Yi H
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Real-Time Reaction Obstacle Avoidance Algorithm for Autonomous Underwater Vehicles in Unknown Environments.
    Yan Z; Li J; Zhang G; Wu Y
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29393915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Formation Control for Multiple Underwater Vehicles.
    Bechlioulis CP; Giagkas F; Karras GC; Kyriakopoulos KJ
    Front Robot AI; 2019; 6():90. PubMed ID: 33501105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Obstacle Avoidance for Unmanned Underwater Vehicles Based on an Improved Velocity Obstacle Method.
    Zhang W; Wei S; Teng Y; Zhang J; Wang X; Yan Z
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment.
    Zhuang Y; Huang H; Sharma S; Xu D; Zhang Q
    ISA Trans; 2019 Nov; 94():174-186. PubMed ID: 31047643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Path Following, Obstacle Detection and Obstacle Avoidance for Thrusted Underwater Snake Robots.
    Kelasidi E; Moe S; Pettersen KY; Kohl AM; Liljebäck P; Gravdahl JT
    Front Robot AI; 2019; 6():57. PubMed ID: 33501072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments.
    Cao X; Zhu D; Yang SX
    IEEE Trans Neural Netw Learn Syst; 2016 Nov; 27(11):2364-2374. PubMed ID: 26485725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trajectory Planning of Autonomous Underwater Vehicles Based on Gauss Pseudospectral Method.
    Gan W; Su L; Chu Z
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bearing-Based Robust Formation Tracking Control of Underactuated AUVs With Optimal Parameter Tuning.
    Su H; Zhu S; Chen C; Yang Z; Guan X
    IEEE Trans Cybern; 2024 Jul; 54(7):4049-4062. PubMed ID: 38265892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal Sensor Formation for 3D Cooperative Localization of AUVs Using Time Difference of Arrival (TDOA) Method.
    Bo X; Razzaqi AA; Wang X
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach.
    Khan JU; Cho HS
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27706042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of the Energy Consumption of Depth Tracking Control Based on Model Predictive Control for Autonomous Underwater Vehicles.
    Yao F; Yang C; Zhang M; Wang Y
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering Cloud-Like Model-Based Targets Underwater Tracking for AUVs.
    Sheng M; Tang S; Qin H; Wan L
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multibody System-Based Adaptive Formation Scheme for Multiple Under-Actuated AUVs.
    Huang H; Tang Q; Zhang G; Zhang T; Wan L; Pang Y
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collision Detection and Avoidance for Underwater Vehicles Using Omnidirectional Vision.
    Ochoa E; Gracias N; Istenič K; Bosch J; Cieślak P; García R
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direction of Arrival Estimation and Highlighting Characteristics of Testing Wideband Echoes from Multiple Autonomous Underwater Vehicles.
    Yin X; Zhang P; Zhou G; Feng Z
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bearing Rigidity-Based Flocking Control of AUVs via Semi-Supervised Incremental Broad Learning.
    Cao W; Yan J; Yang X; Chen C; Guan X
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; PP():. PubMed ID: 38837922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative Localization for Multi-AUVs Based on GM-PHD Filters and Information Entropy Theory.
    Zhang L; Wang T; Zhang F; Xu D
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28991191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Communication-Efficient and Collision-Free Motion Planning of Underwater Vehicles via Integral Reinforcement Learning.
    Yan J; Cao W; Yang X; Chen C; Guan X
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8306-8320. PubMed ID: 37015364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Predictive Guidance Obstacle Avoidance Algorithm for AUV in Unknown Environments.
    Li J; Zhang J; Zhang H; Yan Z
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.