These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 31174756)

  • 1. Screening pesticide residues on fruit peels using portable Raman spectrometer combined with adhesive tape sampling.
    Gong X; Tang M; Gong Z; Qiu Z; Wang D; Fan M
    Food Chem; 2019 Oct; 295():254-258. PubMed ID: 31174756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs.
    Yaseen T; Pu H; Sun DW
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 May; 36(5):762-778. PubMed ID: 30943113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupported liquid-state platform for SERS-based determination of triazophos.
    Liu W; Huang Y; Liu J; Chao S; Wang D; Gong Z; Feng Z; Fan M
    Mikrochim Acta; 2020 Aug; 187(9):502. PubMed ID: 32812088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of pure worm-like AuAg nanochains for ultrasensitive SERS detection of pesticide residues on apple surfaces.
    Jiao A; Dong X; Zhang H; Xu L; Tian Y; Liu X; Chen M
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 209():241-247. PubMed ID: 30414572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables.
    Chen J; Huang M; Kong L; Lin M
    Carbohydr Polym; 2019 Feb; 205():596-600. PubMed ID: 30446146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy.
    Dowgiallo AM; Guenther DA
    J Agric Food Chem; 2019 Nov; 67(46):12642-12651. PubMed ID: 31188587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique.
    Yaseen T; Pu H; Sun DW
    Talanta; 2019 May; 196():537-545. PubMed ID: 30683402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels.
    Liu B; Han G; Zhang Z; Liu R; Jiang C; Wang S; Han MY
    Anal Chem; 2012 Jan; 84(1):255-61. PubMed ID: 22122589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel paper rag as 'D-SERS' substrate for detection of pesticide residues at various peels.
    Zhu Y; Li M; Yu D; Yang L
    Talanta; 2014 Oct; 128():117-24. PubMed ID: 25059138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gecko-Inspired Nanotentacle Surface-Enhanced Raman Spectroscopy Substrate for Sampling and Reliable Detection of Pesticide Residues in Fruits and Vegetables.
    Wang P; Wu L; Lu Z; Li Q; Yin W; Ding F; Han H
    Anal Chem; 2017 Feb; 89(4):2424-2431. PubMed ID: 28194954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables.
    Chen J; Huang Y; Kannan P; Zhang L; Lin Z; Zhang J; Chen T; Guo L
    Anal Chem; 2016 Feb; 88(4):2149-55. PubMed ID: 26810698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman spectroscopic analysis of phorate and fenthion pesticide in apple skin using silver nanoparticles.
    Li X; Zhang S; Yu Z; Yang T
    Appl Spectrosc; 2014; 68(4):483-7. PubMed ID: 24694705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit.
    Xie J; Li L; Khan IM; Wang Z; Ma X
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 231():118104. PubMed ID: 32006913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea.
    Hassan MM; Zareef M; Jiao T; Liu S; Xu Y; Viswadevarayalu A; Li H; Chen Q
    Food Chem; 2021 Feb; 338():127796. PubMed ID: 32805691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Portable surface-enhanced Raman scattering analysis performed with microelectrode-templated silver nanodendrites.
    Raveendran J; Docoslis A
    Analyst; 2020 Jul; 145(13):4467-4476. PubMed ID: 32388541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid detection of thiabendazole residues in apple juice by surface-enhanced Raman scattering coupled with silver coated gold nanoparticles.
    Song Y; Qiu H; Huang Y; Wang X; Lai K
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123189. PubMed ID: 37506455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and Low-Cost Surface-Enhanced Raman Scattering (SERS) Method for On-Site Detection of Flumetsulam in Wheat.
    Han M; Lu H; Zhang Z
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring.
    Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y
    ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive and handy detection of pesticide residue on fruit surface based on single microsphere surface-enhanced Raman spectroscopy technique.
    Feng Y; Wang X; Chang Y; Guo J; Wang C
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):116-128. PubMed ID: 35987151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique.
    Zhang Y; Wang Z; Wu L; Pei Y; Chen P; Cui Y
    Analyst; 2014 Oct; 139(20):5148-54. PubMed ID: 25105174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.