These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31175063)

  • 1. Enhanced production of ethyl acetate using co-culture of Wickerhamomyces anomalus and Saccharomyces cerevisiae.
    Fan G; Teng C; Xu D; Fu Z; Minhazul KAHM; Wu Q; Liu P; Yang R; Li X
    J Biosci Bioeng; 2019 Nov; 128(5):564-570. PubMed ID: 31175063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Ethyl Acetate Production in
    Fan G; Teng C; Xu D; Fu Z; Liu P; Wu Q; Yang R; Li X
    Biomed Res Int; 2019; 2019():1470543. PubMed ID: 30733956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Wickerhamomyces anomalus for Chinese Baijiu making.
    Zha M; Sun B; Wu Y; Yin S; Wang C
    J Biosci Bioeng; 2018 Aug; 126(2):189-195. PubMed ID: 29551466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of
    Wang W; Fan G; Li X; Fu Z; Liang X; Sun B
    Front Microbiol; 2020; 11():598758. PubMed ID: 33329488
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of sequential mixed cultures of Wickerhamomyces anomalus and Saccharomyces cerevisiae on apple cider fermentation.
    Ye M; Yue T; Yuan Y
    FEMS Yeast Res; 2014 Sep; 14(6):873-82. PubMed ID: 24931623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increase the Content of Ester Compounds in Blueberry Wine Fermentation with the Ester-Producing Yeast:
    Cai W; Li B; Chen Y; Fu G; Fan H; Deng M; Wan Y; Liu N; Li M
    Foods; 2022 Nov; 11(22):. PubMed ID: 36429247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethyl acetate production by the elusive alcohol acetyltransferase from yeast.
    Kruis AJ; Levisson M; Mars AE; van der Ploeg M; Garcés Daza F; Ellena V; Kengen SWM; van der Oost J; Weusthuis RA
    Metab Eng; 2017 May; 41():92-101. PubMed ID: 28356220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploitation of Three Non-Conventional Yeast Species in the Brewing Process.
    Canonico L; Galli E; Ciani E; Comitini F; Ciani M
    Microorganisms; 2019 Jan; 7(1):. PubMed ID: 30626108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urea production by yeasts other than Saccharomyces in food fermentation.
    Wu Q; Cui K; Lin J; Zhu Y; Xu Y
    FEMS Yeast Res; 2017 Nov; 17(7):. PubMed ID: 29040547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application Potential of Baijiu Non-
    Li RR; Xu M; Zheng J; Liu YJ; Sun CH; Wang H; Guo XW; Xiao DG; Wu XL; Chen YF
    Front Microbiol; 2022; 13():902597. PubMed ID: 35711782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the potential of wild yeasts for bioethanol production.
    Ruyters S; Mukherjee V; Verstrepen KJ; Thevelein JM; Willems KA; Lievens B
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):39-48. PubMed ID: 25413210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries.
    Oro L; Feliziani E; Ciani M; Romanazzi G; Comitini F
    Int J Food Microbiol; 2018 Jan; 265():18-22. PubMed ID: 29107842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase ethyl acetate production in Saccharomyces cerevisiae by genetic engineering of ethyl acetate metabolic pathway.
    Dong J; Wang P; Fu X; Dong S; Li X; Xiao D
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):801-808. PubMed ID: 30810845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of simultaneous and sequential cofermentation of
    Chen L; Li D; Ren L; Song S; Ma X; Rong Y
    Food Sci Nutr; 2021 Jan; 9(1):71-86. PubMed ID: 33473272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation.
    Li W; Wang JH; Zhang CY; Ma HX; Xiao DG
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):949-960. PubMed ID: 28176138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted microbial collaboration to enhance key flavor metabolites by inoculating Clostridium tyrobutyricum and Saccharomyces cerevisiae in the strong-flavor Baijiu simulated fermentation system.
    Qiu F; Li W; Chen X; Du B; Li X; Sun B
    Food Res Int; 2024 Aug; 190():114647. PubMed ID: 38945586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and metabolism of non-Saccharomyces yeasts isolated from Washington state vineyards in media and high sugar grape musts.
    Aplin JJ; White KP; Edwards CG
    Food Microbiol; 2019 Feb; 77():158-165. PubMed ID: 30297046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Torulaspora delbrueckii contribution in mixed brewing fermentations with different Saccharomyces cerevisiae strains.
    Canonico L; Comitini F; Ciani M
    Int J Food Microbiol; 2017 Oct; 259():7-13. PubMed ID: 28778010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved ethyl caproate production of Chinese liquor yeast by overexpressing fatty acid synthesis genes with OPI1 deletion.
    Chen Y; Luo W; Gong R; Xue X; Guan X; Song L; Guo X; Xiao D
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1261-70. PubMed ID: 27344573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and function of dominant yeast species in the fermentation of strong-flavor baijiu.
    You L; Zhao D; Zhou R; Tan Y; Wang T; Zheng J
    World J Microbiol Biotechnol; 2021 Jan; 37(2):26. PubMed ID: 33427975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.