BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31175136)

  • 1. Identifying Candidate Druggable Targets in Canine Cancer Cell Lines Using Whole-Exome Sequencing.
    Das S; Idate R; Cronise KE; Gustafson DL; Duval DL
    Mol Cancer Ther; 2019 Aug; 18(8):1460-1471. PubMed ID: 31175136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the ErbB/MAPK Signaling Cascade as a Therapeutic Target in Canine Bladder Cancer.
    Cronise KE; Hernandez BG; Gustafson DL; Duval DL
    Mol Pharmacol; 2019 Jul; 96(1):36-46. PubMed ID: 31048548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study.
    Li Y; Buijs-Gladdines JG; Canté-Barrett K; Stubbs AP; Vroegindeweij EM; Smits WK; van Marion R; Dinjens WN; Horstmann M; Kuiper RP; Buijsman RC; Zaman GJ; van der Spek PJ; Pieters R; Meijerink JP
    PLoS Med; 2016 Dec; 13(12):e1002200. PubMed ID: 27997540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-Exome Sequencing Identifies Two Discrete Druggable Signaling Pathways in Follicular Thyroid Cancer.
    Erinjeri NJ; Nicolson NG; Deyholos C; Korah R; Carling T
    J Am Coll Surg; 2018 Jun; 226(6):950-959.e5. PubMed ID: 29571661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deregulated Immune Pathway Associated with Palbociclib Resistance in Preclinical Breast Cancer Models: Integrative Genomics and Transcriptomics.
    Pandey K; Lee E; Park N; Hur J; Cho YB; Katuwal NB; Kim SK; Lee SA; Kim I; An HJ; Hwang S; Moon YW
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33504001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells.
    Little AS; Balmanno K; Sale MJ; Newman S; Dry JR; Hampson M; Edwards PA; Smith PD; Cook SJ
    Sci Signal; 2011 Mar; 4(166):ra17. PubMed ID: 21447798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer.
    Liang H; Cheung LW; Li J; Ju Z; Yu S; Stemke-Hale K; Dogruluk T; Lu Y; Liu X; Gu C; Guo W; Scherer SE; Carter H; Westin SN; Dyer MD; Verhaak RG; Zhang F; Karchin R; Liu CG; Lu KH; Broaddus RR; Scott KL; Hennessy BT; Mills GB
    Genome Res; 2012 Nov; 22(11):2120-9. PubMed ID: 23028188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive characterization of the mutational landscape in multiple myeloma cell lines reveals potential drivers and pathways associated with tumor progression and drug resistance.
    Vikova V; Jourdan M; Robert N; Requirand G; Boireau S; Bruyer A; Vincent L; Cartron G; Klein B; Elemento O; Kassambara A; Moreaux J
    Theranostics; 2019; 9(2):540-553. PubMed ID: 30809292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-exome sequencing reveals novel genetic variants associated with diverse phenotypes of melanoma cells.
    Hartman ML; Sztiller-Sikorska M; Czyz M
    Mol Carcinog; 2019 Apr; 58(4):588-602. PubMed ID: 30556601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of AKT and ERK1/2 and mutations of PIK3CA and PTEN are predictive of breast cancer cell sensitivity to everolimus in vitro.
    Citi V; Del Re M; Martelli A; Calderone V; Breschi MC; Danesi R
    Cancer Chemother Pharmacol; 2018 Apr; 81(4):745-754. PubMed ID: 29476223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis.
    Cha S; Lee J; Shin JY; Kim JY; Sim SH; Keam B; Kim TM; Kim DW; Heo DS; Lee SH; Kim JI
    BMC Cancer; 2016 Feb; 16():170. PubMed ID: 26925973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations.
    Wardell CP; Fujita M; Yamada T; Simbolo M; Fassan M; Karlic R; Polak P; Kim J; Hatanaka Y; Maejima K; Lawlor RT; Nakanishi Y; Mitsuhashi T; Fujimoto A; Furuta M; Ruzzenente A; Conci S; Oosawa A; Sasaki-Oku A; Nakano K; Tanaka H; Yamamoto Y; Michiaki K; Kawakami Y; Aikata H; Ueno M; Hayami S; Gotoh K; Ariizumi SI; Yamamoto M; Yamaue H; Chayama K; Miyano S; Getz G; Scarpa A; Hirano S; Nakamura T; Nakagawa H
    J Hepatol; 2018 May; 68(5):959-969. PubMed ID: 29360550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole exome sequencing in the rat.
    Foley JF; Phadke DP; Hardy O; Hardy S; Miller V; Madan A; Howard K; Kruse K; Lord C; Ramaiahgari S; Solomon GG; Shah RR; Pandiri AR; Herbert RA; Sills RC; Merrick BA
    BMC Genomics; 2018 Jun; 19(1):487. PubMed ID: 29925311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes.
    Liu C; Zhao J; Lu W; Dai Y; Hockings J; Zhou Y; Nussinov R; Eng C; Cheng F
    PLoS Comput Biol; 2020 Feb; 16(2):e1007701. PubMed ID: 32101536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Germline Mutations for Novel Candidate Predisposition Genes in Sporadic Schwannomatosis.
    Min BJ; Kang YK; Chung YG; Seo ME; Chang KB; Joo MW
    Clin Orthop Relat Res; 2020 Nov; 478(11):2442-2450. PubMed ID: 32281771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.
    Nickerson ML; Witte N; Im KM; Turan S; Owens C; Misner K; Tsang SX; Cai Z; Wu S; Dean M; Costello JC; Theodorescu D
    Oncogene; 2017 Jan; 36(1):35-46. PubMed ID: 27270441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma.
    Chow YP; Tan LP; Chai SJ; Abdul Aziz N; Choo SW; Lim PV; Pathmanathan R; Mohd Kornain NK; Lum CL; Pua KC; Yap YY; Tan TY; Teo SH; Khoo AS; Patel V
    Sci Rep; 2017 Mar; 7():42980. PubMed ID: 28256603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of druggable cancer driver genes amplified across TCGA datasets.
    Chen Y; McGee J; Chen X; Doman TN; Gong X; Zhang Y; Hamm N; Ma X; Higgs RE; Bhagwat SV; Buchanan S; Peng SB; Staschke KA; Yadav V; Yue Y; Kouros-Mehr H
    PLoS One; 2014; 9(5):e98293. PubMed ID: 24874471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OncoVar: an integrated database and analysis platform for oncogenic driver variants in cancers.
    Wang T; Ruan S; Zhao X; Shi X; Teng H; Zhong J; You M; Xia K; Sun Z; Mao F
    Nucleic Acids Res; 2021 Jan; 49(D1):D1289-D1301. PubMed ID: 33179738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A correction to the research article titled: "Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells" by A. S. Little, K. Balmanno, M. J. Sale, S. Newman, J. R. Dry, M. Hampson, P. A. W. Edwards, P. D. Smith, S. J. Cook.
    Little AS; Balmanno K; Sale MJ; Newman S; Dry JR; Hampson M; Edwards PA; Smith PD; Cook SJ
    Sci Signal; 2011; 4(170):er2. PubMed ID: 21674991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.