BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 31175264)

  • 1. Advances in heart regeneration based on cardiomyocyte proliferation and regenerative potential of binucleated cardiomyocytes and polyploidization.
    Leone M; Engel FB
    Clin Sci (Lond); 2019 Jun; 133(11):1229-1253. PubMed ID: 31175264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyploidy in Cardiomyocytes: Roadblock to Heart Regeneration?
    Derks W; Bergmann O
    Circ Res; 2020 Feb; 126(4):552-565. PubMed ID: 32078450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiomyocyte Polyploidy and Implications for Heart Regeneration.
    Gan P; Patterson M; Sucov HM
    Annu Rev Physiol; 2020 Feb; 82():45-61. PubMed ID: 31585517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudo-bipolar spindle formation and cell division in postnatal binucleated cardiomyocytes.
    Leone M; Engel FB
    J Mol Cell Cardiol; 2019 Sep; 134():69-73. PubMed ID: 31301302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Mononuclear Cardiomyocytes in Cardiac Turnover and Regeneration.
    Becker C; Hesse M
    Curr Cardiol Rep; 2020 May; 22(6):39. PubMed ID: 32430578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19.
    Rigaud VOC; Hoy RC; Kurian J; Zarka C; Behanan M; Brosious I; Pennise J; Patel T; Wang T; Johnson J; Kraus LM; Mohsin S; Houser SR; Khan M
    Circulation; 2023 Jan; 147(4):324-337. PubMed ID: 36314132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish.
    González-Rosa JM; Sharpe M; Field D; Soonpaa MH; Field LJ; Burns CE; Burns CG
    Dev Cell; 2018 Feb; 44(4):433-446.e7. PubMed ID: 29486195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lamin B2 Levels Regulate Polyploidization of Cardiomyocyte Nuclei and Myocardial Regeneration.
    Han L; Choudhury S; Mich-Basso JD; Ammanamanchi N; Ganapathy B; Suresh S; Khaladkar M; Singh J; Maehr R; Zuppo DA; Kim J; Eberwine JH; Wyman SK; Wu YL; Kühn B
    Dev Cell; 2020 Apr; 53(1):42-59.e11. PubMed ID: 32109383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Comparison of Mononucleated and Binucleated Cardiomyocytes Reveals Molecular Mechanisms Underlying Distinct Proliferative Competencies.
    Windmueller R; Leach JP; Babu A; Zhou S; Morley MP; Wakabayashi A; Petrenko NB; Viatour P; Morrisey EE
    Cell Rep; 2020 Mar; 30(9):3105-3116.e4. PubMed ID: 32130910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of Neonatal Heart Regeneration.
    Cardoso AC; Pereira AHM; Sadek HA
    Curr Cardiol Rep; 2020 Apr; 22(5):33. PubMed ID: 32333123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic support by left ventricular assist devices reduces cardiomyocyte DNA content in the failing human heart.
    Wohlschlaeger J; Levkau B; Brockhoff G; Schmitz KJ; von Winterfeld M; Takeda A; Takeda N; Stypmann J; Vahlhaus C; Schmid C; Pomjanski N; Böcking A; Baba HA
    Circulation; 2010 Mar; 121(8):989-96. PubMed ID: 20159834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Cardiomyocytes in Heart Regeneration.
    Feng J; Li Y; Nie Y
    Curr Drug Targets; 2018; 19(9):1077-1086. PubMed ID: 29773058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyploid cardiomyocytes: implications for heart regeneration.
    Kirillova A; Han L; Liu H; Kühn B
    Development; 2021 Jul; 148(14):. PubMed ID: 34897388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heart regeneration and the cardiomyocyte cell cycle.
    Hesse M; Welz A; Fleischmann BK
    Pflugers Arch; 2018 Feb; 470(2):241-248. PubMed ID: 28849267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Three-dimensional Label-free Digital Holographic Imaging of Cardiomyocyte Size, Ploidy, and Cell Division.
    Park S; Huang H; Ross I; Moreno J; Khyeam S; Simmons J; Huang GN; Payumo AY
    bioRxiv; 2023 Nov; ():. PubMed ID: 37961676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foxm1 regulates cardiomyocyte proliferation in adult zebrafish after cardiac injury.
    Zuppo DA; Missinato MA; Santana-Santos L; Li G; Benos PV; Tsang M
    Development; 2023 Mar; 150(6):. PubMed ID: 36846912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the Cardiomyocyte Cell Cycle for Heart Regeneration.
    Locatelli P; Giménez CS; Vega MU; Crottogini A; Belaich MN
    Curr Drug Targets; 2019; 20(2):241-254. PubMed ID: 30068271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Malat1 deficiency prevents neonatal heart regeneration by inducing cardiomyocyte binucleation.
    Aslan GS; Jaé N; Manavski Y; Fouani Y; Shumliakivska M; Kettenhausen L; Kirchhof L; Günther S; Fischer A; Luxán G; Dimmeler S
    JCI Insight; 2023 Mar; 8(5):. PubMed ID: 36883566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dedifferentiation, Proliferation, and Redifferentiation of Adult Mammalian Cardiomyocytes After Ischemic Injury.
    Wang WE; Li L; Xia X; Fu W; Liao Q; Lan C; Yang D; Chen H; Yue R; Zeng C; Zhou L; Zhou B; Duan DD; Chen X; Houser SR; Zeng C
    Circulation; 2017 Aug; 136(9):834-848. PubMed ID: 28642276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Midbody Positioning and Distance Between Daughter Nuclei Enable Unequivocal Identification of Cardiomyocyte Cell Division in Mice.
    Hesse M; Doengi M; Becker A; Kimura K; Voeltz N; Stein V; Fleischmann BK
    Circ Res; 2018 Oct; 123(9):1039-1052. PubMed ID: 30355161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.