These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31175476)

  • 21. Development of a Random Forest model for forecasting allergenic pollen in North America.
    Lo F; Bitz CM; Hess JJ
    Sci Total Environ; 2021 Jun; 773():145590. PubMed ID: 33940736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The occurrence of Ambrosia pollen in the atmosphere of Northwest Turkey: investigation of possible source regions.
    Celenk S; Malyer H
    Int J Biometeorol; 2017 Aug; 61(8):1499-1510. PubMed ID: 28243727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correspondence: ragweed pollen.
    DINGLE AN
    J Allergy; 1958 Sep; 29(5):472-4. PubMed ID: 13575068
    [No Abstract]   [Full Text] [Related]  

  • 24. Assessment of the potential real pollen related allergenic load on the atmosphere of Porto city.
    Fernández-González M; Ribeiro H; Pereira JRS; Rodríguez-Rajo FJ; Abreu I
    Sci Total Environ; 2019 Jun; 668():333-341. PubMed ID: 30852210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PLANT AEROALLERGENS IN TWO MAJOR CITIES OF GEORGIA - TBILISI AND KUTAISI.
    Abramidze T; Gotua M; Chikhelidze N; Cheishvili T; Gamkrelidze A
    Georgian Med News; 2017 Mar; (264):75-80. PubMed ID: 28480855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Associations between weather conditions and ragweed pollen variations in Szeged, Hungary.
    Matyasovszky I; Makra L; Csépe Z
    Arh Hig Rada Toksikol; 2012 Sep; 63(3):311-20. PubMed ID: 23152381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pollen of common ragweed (Ambrosia artemisiifolia L.): Illumina-based de novo sequencing and differential transcript expression upon elevated NO
    Zhao F; Durner J; Winkler JB; Traidl-Hoffmann C; Strom TM; Ernst D; Frank U
    Environ Pollut; 2017 May; 224():503-514. PubMed ID: 28284545
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling atmospheric concentrations of grass pollen using meteorological variables in Melbourne, Australia.
    Erbas B; Chang JH; Newbigin E; Dhamarge S
    Int J Environ Health Res; 2007 Oct; 17(5):361-8. PubMed ID: 17924264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ambrosia pollen in Tulsa, Oklahoma: aerobiology, trends, and forecasting model development.
    Howard LE; Levetin E
    Ann Allergy Asthma Immunol; 2014 Dec; 113(6):641-6. PubMed ID: 25240331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diurnal variation in airborne pollen concentrations of the selected taxa in Zagreb, Croatia.
    Toth I; Peternel R; Srnec L; Vojniković B
    Coll Antropol; 2011 Sep; 35 Suppl 2():43-50. PubMed ID: 22220402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying long-term phenological patterns of aerial insectivores roosting in the Great Lakes region using weather surveillance radar.
    Deng Y; Belotti MCTD; Zhao W; Cheng Z; Perez G; Tielens E; Simons VF; Sheldon DR; Maji S; Kelly JF; Horton KG
    Glob Chang Biol; 2023 Mar; 29(5):1407-1419. PubMed ID: 36397251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical simulation of birch pollen dispersion with an operational weather forecast system.
    Vogel H; Pauling A; Vogel B
    Int J Biometeorol; 2008 Nov; 52(8):805-14. PubMed ID: 18651182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium.
    Bruffaerts N; De Smedt T; Delcloo A; Simons K; Hoebeke L; Verstraeten C; Van Nieuwenhuyse A; Packeu A; Hendrickx M
    Int J Biometeorol; 2018 Mar; 62(3):483-491. PubMed ID: 29064036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom.
    Smith M; Emberlin J
    Clin Exp Allergy; 2005 Oct; 35(10):1400-6. PubMed ID: 16238802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on pollen allergy in Delhi. Diurnal periodicity of common allergenic pollen.
    Singh AB; Babu CR
    Allergy; 1980 Jun; 35(4):311-7. PubMed ID: 7192499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting the Olea pollen concentration with a machine learning algorithm ensemble.
    Cordero JM; Rojo J; Gutiérrez-Bustillo AM; Narros A; Borge R
    Int J Biometeorol; 2021 Apr; 65(4):541-554. PubMed ID: 33188463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Prospective study of pollen dispersal prediction and identifying the usefulness of different parameters].
    Maeda M; Maguchi S; Nakamaru Y; Takagi D; Fukuda S
    Nihon Jibiinkoka Gakkai Kaiho; 2006 May; 109(5):455-60. PubMed ID: 16768161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A biology-driven receptor model for daily pollen allergy risk in Korea based on Weibull probability density function.
    Kim KR; Kim M; Choe HS; Han MJ; Lee HR; Oh JW; Kim BJ
    Int J Biometeorol; 2017 Feb; 61(2):259-272. PubMed ID: 27387542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014.
    Plaza MP; Alcázar P; Galán C
    Int J Biometeorol; 2016 Dec; 60(12):1841-1847. PubMed ID: 27094917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Airborne olive pollen counts are not representative of exposure to the major olive allergen Ole e 1.
    Galan C; Antunes C; Brandao R; Torres C; Garcia-Mozo H; Caeiro E; Ferro R; Prank M; Sofiev M; Albertini R; Berger U; Cecchi L; Celenk S; Grewling Ł; Jackowiak B; Jäger S; Kennedy R; Rantio-Lehtimäki A; Reese G; Sauliene I; Smith M; Thibaudon M; Weber B; Weichenmeier I; Pusch G; Buters JT;
    Allergy; 2013 Jun; 68(6):809-12. PubMed ID: 23647633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.