These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 31175676)
1. Preparing for hard times: Scalp and intracranial physiological signatures of proactive cognitive control. De Loof E; Vassena E; Janssens C; De Taeye L; Meurs A; Van Roost D; Boon P; Raedt R; Verguts T Psychophysiology; 2019 Oct; 56(10):e13417. PubMed ID: 31175676 [TBL] [Abstract][Full Text] [Related]
2. Expectancy-related modulations of neural oscillations in continuous performance tasks. Bickel S; Dias EC; Epstein ML; Javitt DC Neuroimage; 2012 Sep; 62(3):1867-76. PubMed ID: 22691613 [TBL] [Abstract][Full Text] [Related]
3. Brain electrical activity signatures during performance of the Multisource Interference Task. González-Villar AJ; Carrillo-de-la-Peña MT Psychophysiology; 2017 Jun; 54(6):874-881. PubMed ID: 28220517 [TBL] [Abstract][Full Text] [Related]
4. Preparing for (valenced) action: The role of differential effort in the orthogonalized go/no-go task. Schevernels H; Bombeke K; Krebs RM; Boehler CN Psychophysiology; 2016 Feb; 53(2):186-97. PubMed ID: 26481327 [TBL] [Abstract][Full Text] [Related]
5. A single bout of vigorous-intensity aerobic exercise affects reactive, but not proactive cognitive brain functions. Chacko SC; Quinzi F; De Fano A; Bianco V; Mussini E; Berchicci M; Perri RL; Di Russo F Int J Psychophysiol; 2020 Jan; 147():233-243. PubMed ID: 31837342 [TBL] [Abstract][Full Text] [Related]
6. Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing. Glazer JE; Kelley NJ; Pornpattananangkul N; Mittal VA; Nusslock R Int J Psychophysiol; 2018 Oct; 132(Pt B):184-202. PubMed ID: 29454641 [TBL] [Abstract][Full Text] [Related]
7. Proactive Control: Neural Oscillatory Correlates of Conflict Anticipation and Response Slowing. Chang A; Ide JS; Li HH; Chen CC; Li CR eNeuro; 2017; 4(3):. PubMed ID: 28560315 [TBL] [Abstract][Full Text] [Related]
8. The effect of response type (motor output versus mental counting) on the intracerebral distribution of the slow cortical potentials in an externally cued (CNV) paradigm. Bares M; Nestrasil I; Rektor I Brain Res Bull; 2007 Jan; 71(4):428-35. PubMed ID: 17208661 [TBL] [Abstract][Full Text] [Related]
9. High resolution spatiotemporal analysis of the contingent negative variation in simple or complex motor tasks and a non-motor task. Cui RQ; Egkher A; Huter D; Lang W; Lindinger G; Deecke L Clin Neurophysiol; 2000 Oct; 111(10):1847-59. PubMed ID: 11018502 [TBL] [Abstract][Full Text] [Related]
10. Teasing apart the anticipatory and consummatory processing of monetary incentives: An event-related potential study of reward dynamics. Novak KD; Foti D Psychophysiology; 2015 Nov; 52(11):1470-82. PubMed ID: 26223291 [TBL] [Abstract][Full Text] [Related]
11. Effects of ageing on cognitive task preparation as reflected by event-related potentials. Wild-Wall N; Hohnsbein J; Falkenstein M Clin Neurophysiol; 2007 Mar; 118(3):558-69. PubMed ID: 17208044 [TBL] [Abstract][Full Text] [Related]
12. Long-lasting effects of performance-contingent unconscious and conscious reward incentives during cued task-switching. Capa RL; Bouquet CA; Dreher JC; Dufour A Cortex; 2013; 49(7):1943-54. PubMed ID: 22770561 [TBL] [Abstract][Full Text] [Related]
13. Differential Go/NoGo activity in both contingent negative variation and spectral power. Funderud I; Lindgren M; Løvstad M; Endestad T; Voytek B; Knight RT; Solbakk AK PLoS One; 2012; 7(10):e48504. PubMed ID: 23119040 [TBL] [Abstract][Full Text] [Related]
14. Permanent or transitory effects on neurocognitive components of the CNV complex induced by brain dysfunctions, lesions and ablations in humans. Zappoli R Int J Psychophysiol; 2003 May; 48(2):189-220. PubMed ID: 12763574 [TBL] [Abstract][Full Text] [Related]
15. Stroop task performance across the lifespan: High cognitive reserve in older age is associated with enhanced proactive and reactive interference control. Gajewski PD; Falkenstein M; Thönes S; Wascher E Neuroimage; 2020 Feb; 207():116430. PubMed ID: 31805383 [TBL] [Abstract][Full Text] [Related]
16. Temporal dynamics of reward anticipation in the human brain. Zhang Y; Li Q; Wang Z; Liu X; Zheng Y Biol Psychol; 2017 Sep; 128():89-97. PubMed ID: 28735969 [TBL] [Abstract][Full Text] [Related]
17. Should I stay or should I go? How local-global implicit temporal expectancy shapes proactive motor control: An hdEEG study. Duma GM; Granziol U; Mento G Neuroimage; 2020 Oct; 220():117071. PubMed ID: 32574807 [TBL] [Abstract][Full Text] [Related]
18. Impaired Midline Theta Power and Connectivity During Proactive Cognitive Control in Schizophrenia. Ryman SG; Cavanagh JF; Wertz CJ; Shaff NA; Dodd AB; Stevens B; Ling J; Yeo RA; Hanlon FM; Bustillo J; Stromberg SF; Lin DS; Abrams S; Mayer AR Biol Psychiatry; 2018 Nov; 84(9):675-683. PubMed ID: 29921417 [TBL] [Abstract][Full Text] [Related]
19. Topographic differences in CNV amplitude reflect different preparatory processes. Leynes PA; Allen JD; Marsh RL Int J Psychophysiol; 1998 Dec; 31(1):33-44. PubMed ID: 9934619 [TBL] [Abstract][Full Text] [Related]
20. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]