BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31175693)

  • 1. Isl-1 positive pharyngeal mesenchyme subpopulation and its role in the separation and remodeling of the aortic sac in embryonic mouse heart.
    Wang JJ; Liu HX; Song L; Li HR; Yang YP; Zhang T; Jing Y
    Dev Dyn; 2019 Sep; 248(9):771-783. PubMed ID: 31175693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foxc2 in pharyngeal arch mesenchyme is important for aortic arch artery remodelling and ventricular septum formation.
    Uddin MK; Kimura W; Ishikura T; Koseki H; Yoshida N; Islam MJ; Amin MB; Nakamura K; Wu YX; Sato E; Aoto K; Miura N
    Biomed Res; 2015; 36(4):235-45. PubMed ID: 26299482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Second heart field and the development of the outflow tract in human embryonic heart.
    Yang YP; Li HR; Cao XM; Wang QX; Qiao CJ; Ya J
    Dev Growth Differ; 2013 Apr; 55(3):359-67. PubMed ID: 23488909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the human aortic arch system captured in an interactive three-dimensional reference model.
    Rana MS; Sizarov A; Christoffels VM; Moorman AF
    Am J Med Genet A; 2014 Jun; 164A(6):1372-83. PubMed ID: 23613216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The formal pathogenesis of isolated common carotid or innominate arteries: the concept of malseptation of the aortic sac.
    Männer J; Seidl W; Steding G
    Anat Embryol (Berl); 1997 Dec; 196(6):435-45. PubMed ID: 9453364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connexin 43 expression reflects neural crest patterns during cardiovascular development.
    Waldo KL; Lo CW; Kirby ML
    Dev Biol; 1999 Apr; 208(2):307-23. PubMed ID: 10191047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporally separated cardiac neural crest subpopulations that target the outflow tract septum and pharyngeal arch arteries.
    Boot MJ; Gittenberger-De Groot AC; Van Iperen L; Hierck BP; Poelmann RE
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Nov; 275(1):1009-18. PubMed ID: 14533175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner.
    Chen D; Wang X; Liang D; Gordon J; Mittal A; Manley N; Degenhardt K; Astrof S
    Dev Biol; 2015 Nov; 407(2):195-210. PubMed ID: 26434918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prdm1 functions in the mesoderm of the second heart field, where it interacts genetically with Tbx1, during outflow tract morphogenesis in the mouse embryo.
    Vincent SD; Mayeuf-Louchart A; Watanabe Y; Brzezinski JA; Miyagawa-Tomita S; Kelly RG; Buckingham M
    Hum Mol Genet; 2014 Oct; 23(19):5087-101. PubMed ID: 24821700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulmonary endoderm, second heart field and the morphogenesis of distal outflow tract in mouse embryonic heart.
    Liang S; Li HC; Wang YX; Wu SS; Cai YJ; Cui HL; Yang YP; Ya J
    Dev Growth Differ; 2014 May; 56(4):276-92. PubMed ID: 24697670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions.
    Liu C; Liu W; Palie J; Lu MF; Brown NA; Martin JF
    Development; 2002 Nov; 129(21):5081-91. PubMed ID: 12397115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some mice feature 5th pharyngeal arch arteries and double-lumen aortic arch malformations.
    Geyer SH; Weninger WJ
    Cells Tissues Organs; 2012; 196(1):90-8. PubMed ID: 22287557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field.
    Wang X; Chen D; Chen K; Jubran A; Ramirez A; Astrof S
    Dev Biol; 2017 Jan; 421(2):108-117. PubMed ID: 27955943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal patterning of the aortic arch arteries does not evoke cardiac malformations.
    Kirby ML; Hunt P; Wallis K; Thorogood P
    Dev Dyn; 1997 Jan; 208(1):34-47. PubMed ID: 8989519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clarification of the identity of the mammalian fifth pharyngeal arch artery.
    Bamforth SD; Chaudhry B; Bennett M; Wilson R; Mohun TJ; Van Mierop LH; Henderson DJ; Anderson RH
    Clin Anat; 2013 Mar; 26(2):173-82. PubMed ID: 22623372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-Extracellular Matrix Interactions Play Multiple Essential Roles in Aortic Arch Development.
    Warkala M; Chen D; Ramirez A; Jubran A; Schonning M; Wang X; Zhao H; Astrof S
    Circ Res; 2021 Feb; 128(3):e27-e44. PubMed ID: 33249995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hoxa3 and signaling molecules involved in aortic arch patterning and remodeling.
    Kameda Y
    Cell Tissue Res; 2009 May; 336(2):165-78. PubMed ID: 19290546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional and molecular analysis of the arterial pole of the developing human heart.
    Sizarov A; Lamers WH; Mohun TJ; Brown NA; Anderson RH; Moorman AF
    J Anat; 2012 Apr; 220(4):336-49. PubMed ID: 22296102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart.
    Poelmann RE; Gittenberger-de Groot AC; Biermans MWM; Dolfing AI; Jagessar A; van Hattum S; Hoogenboom A; Wisse LJ; Vicente-Steijn R; de Bakker MAG; Vonk FJ; Hirasawa T; Kuratani S; Richardson MK
    Evodevo; 2017; 8():9. PubMed ID: 28491275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hoxa3 regulates the proliferation and differentiation of the third pharyngeal arch mesenchyme in mice.
    Chisaka O; Kameda Y
    Cell Tissue Res; 2005 Apr; 320(1):77-89. PubMed ID: 15714286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.