BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31175975)

  • 21. Prediction of pupylation sites using the composition of k-spaced amino acid pairs.
    Tung CW
    J Theor Biol; 2013 Nov; 336():11-7. PubMed ID: 23871866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of protein phosphorylation sites by using the composition of k-spaced amino acid pairs.
    Zhao X; Zhang W; Xu X; Ma Z; Yin M
    PLoS One; 2012; 7(10):e46302. PubMed ID: 23110047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites.
    Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs.
    Wang XB; Wu LY; Wang YC; Deng NY
    Protein Eng Des Sel; 2009 Nov; 22(11):707-12. PubMed ID: 19783671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier.
    Qiu WR; Sun BQ; Xiao X; Xu ZC; Jia JH; Chou KC
    Genomics; 2018 Sep; 110(5):239-246. PubMed ID: 29107015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting lysine glycation sites using bi-profile bayes feature extraction.
    Ju Z; Sun J; Li Y; Wang L
    Comput Biol Chem; 2017 Dec; 71():98-103. PubMed ID: 29040908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glypre: In Silico Prediction of Protein Glycation Sites by Fusing Multiple Features and Support Vector Machine.
    Zhao X; Zhao X; Bao L; Zhang Y; Dai J; Yin M
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29099805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. iGlu_AdaBoost: Identification of Lysine Glutarylation Using the AdaBoost Classifier.
    Dou L; Li X; Zhang L; Xiang H; Xu L
    J Proteome Res; 2021 Jan; 20(1):191-201. PubMed ID: 33090794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization and Identification of Lysine Succinylation Sites based on Deep Learning Method.
    Huang KY; Hsu JB; Lee TY
    Sci Rep; 2019 Nov; 9(1):16175. PubMed ID: 31700141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration : Malonylation site prediction.
    Liu X; Wang L; Li J; Hu J; Zhang X
    BMC Genomics; 2020 Nov; 21(1):812. PubMed ID: 33225896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou's pseudo amino acid composition.
    Kong L; Zhang L; Lv J
    J Theor Biol; 2014 Mar; 344():12-8. PubMed ID: 24316044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SuccSite: Incorporating Amino Acid Composition and Informative k-spaced Amino Acid Pairs to Identify Protein Succinylation Sites.
    Kao HJ; Nguyen VN; Huang KY; Chang WC; Lee TY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):208-219. PubMed ID: 32592791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting protein-protein interactions by combing various sequence- derived features into the general form of Chou's Pseudo amino acid composition.
    Zhao XW; Ma ZQ; Yin MH
    Protein Pept Lett; 2012 May; 19(5):492-500. PubMed ID: 22486644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting pupylation sites in prokaryotic proteins using semi-supervised self-training support vector machine algorithm.
    Ju Z; Gu H
    Anal Biochem; 2016 Aug; 507():1-6. PubMed ID: 27197054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of protein structural class for low-similarity sequences using Chou's pseudo amino acid composition and wavelet denoising.
    Yu B; Lou L; Li S; Zhang Y; Qiu W; Wu X; Wang M; Tian B
    J Mol Graph Model; 2017 Sep; 76():260-273. PubMed ID: 28743071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nepsilon-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function.
    Wisniewski JR; Zougman A; Mann M
    Nucleic Acids Res; 2008 Feb; 36(2):570-7. PubMed ID: 18056081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual-layer wavelet SVM for predicting protein structural class via the general form of Chou's pseudo amino acid composition.
    Chen C; Shen ZB; Zou XY
    Protein Pept Lett; 2012 Apr; 19(4):422-9. PubMed ID: 22185506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis.
    Li ZC; Zhou XB; Dai Z; Zou XY
    Amino Acids; 2009 Jul; 37(2):415-25. PubMed ID: 18726140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.