These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31176065)

  • 1. Copper trafficking in eukaryotic systems: current knowledge from experimental and computational efforts.
    Magistrato A; Pavlin M; Qasem Z; Ruthstein S
    Curr Opin Struct Biol; 2019 Oct; 58():26-33. PubMed ID: 31176065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An EPR Study on the Interaction between the Cu(I) Metal Binding Domains of ATP7B and the Atox1 Metallochaperone.
    Zaccak M; Qasem Z; Gevorkyan-Airapetov L; Ruthstein S
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32748830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ctr1 Intracellular Loop Is Involved in the Copper Transfer Mechanism to the Atox1 Metallochaperone.
    Levy AR; Nissim M; Mendelman N; Chill J; Ruthstein S
    J Phys Chem B; 2016 Dec; 120(48):12334-12345. PubMed ID: 27934216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cu(I) Controls Conformational States in Human Atox1 Metallochaperone: An EPR and Multiscale Simulation Study.
    Perkal O; Qasem Z; Turgeman M; Schwartz R; Gevorkyan-Airapetov L; Pavlin M; Magistrato A; Major DT; Ruthstein S
    J Phys Chem B; 2020 Jun; 124(22):4399-4411. PubMed ID: 32396355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pivotal role of MBD4-ATP7B in the human Cu(i) excretion path as revealed by EPR experiments and all-atom simulations.
    Qasem Z; Pavlin M; Ritacco I; Gevorkyan-Airapetov L; Magistrato A; Ruthstein S
    Metallomics; 2019 Jul; 11(7):1288-1297. PubMed ID: 31187846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic and Structural Basis for Inhibition of Copper Trafficking by Platinum Anticancer Drugs.
    Lasorsa A; Nardella MI; Rosato A; Mirabelli V; Caliandro R; Caliandro R; Natile G; Arnesano F
    J Am Chem Soc; 2019 Jul; 141(30):12109-12120. PubMed ID: 31283225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical interplay between the human high-affinity copper transporter hCtr1 and its cognate metal ion.
    Walke G; Aupič J; Kashoua H; Janoš P; Meron S; Shenberger Y; Qasem Z; Gevorkyan-Airapetov L; Magistrato A; Ruthstein S
    Biophys J; 2022 Apr; 121(7):1194-1204. PubMed ID: 35202609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration.
    Blockhuys S; Zhang X; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2020 Jan; 117(4):2014-2019. PubMed ID: 31932435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interference between copper transport systems and platinum drugs.
    Arnesano F; Natile G
    Semin Cancer Biol; 2021 Nov; 76():173-188. PubMed ID: 34058339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human glutaredoxin-1 can transfer copper to isolated metal binding domains of the P
    Maghool S; Fontaine S; Roberts BR; Kwan AH; Maher MJ
    Sci Rep; 2020 Mar; 10(1):4157. PubMed ID: 32139726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper transport systems are involved in multidrug resistance and drug transport.
    Furukawa T; Komatsu M; Ikeda R; Tsujikawa K; Akiyama S
    Curr Med Chem; 2008; 15(30):3268-78. PubMed ID: 19075668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper relay path through the N-terminus of Wilson disease protein, ATP7B.
    Shanmugavel KP; Wittung-Stafshede P
    Metallomics; 2019 Sep; 11(9):1472-1480. PubMed ID: 31321400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and Functional Diversity Among the Members of CTR, the Membrane Copper Transporter Family.
    Mandal T; Kar S; Maji S; Sen S; Gupta A
    J Membr Biol; 2020 Oct; 253(5):459-468. PubMed ID: 32975619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations.
    Levy AR; Turgeman M; Gevorkyan-Aiapetov L; Ruthstein S
    Protein Sci; 2017 Aug; 26(8):1609-1618. PubMed ID: 28543811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crossroads between membrane trafficking machinery and copper homeostasis in the nerve system.
    Wen MH; Xie X; Huang PS; Yang K; Chen TY
    Open Biol; 2021 Dec; 11(12):210128. PubMed ID: 34847776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis.
    La Fontaine S; Mercer JF
    Arch Biochem Biophys; 2007 Jul; 463(2):149-67. PubMed ID: 17531189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trafficking mechanisms of P-type ATPase copper transporters.
    Hartwig C; Zlatic SA; Wallin M; Vrailas-Mortimer A; Fahrni CJ; Faundez V
    Curr Opin Cell Biol; 2019 Aug; 59():24-33. PubMed ID: 30928671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of Human Copper Chaperone Atox1 and Disulfide Bond Cleavage by Cisplatin and Glutathione.
    Nardella MI; Rosato A; Belviso BD; Caliandro R; Natile G; Arnesano F
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper Transporter ATP7A (Copper-Transporting P-Type ATPase/Menkes ATPase) Limits Vascular Inflammation and Aortic Aneurysm Development: Role of MicroRNA-125b.
    Sudhahar V; Das A; Horimatsu T; Ash D; Leanhart S; Antipova O; Vogt S; Singla B; Csanyi G; White J; Kaplan JH; Fulton D; Weintraub NL; Kim HW; Ushio-Fukai M; Fukai T
    Arterioscler Thromb Vasc Biol; 2019 Nov; 39(11):2320-2337. PubMed ID: 31554420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-silico analysis of novel p.(Gly14Ser) variant of ATOX1 gene: plausible role in modulating ATOX1-ATP7B interaction.
    Kumari N; Kumar A; Pal A; Thapa BR; Modi M; Prasad R
    Mol Biol Rep; 2019 Jun; 46(3):3307-3313. PubMed ID: 30980273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.