These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fabrication of silver nanoparticles within chitosan based microgels for catalysis. Ahmad A; Roy PG; Zhou S; Irfan A; Kanwal F; Begum R; Farooqi ZH Int J Biol Macromol; 2023 Jun; 240():124401. PubMed ID: 37044327 [TBL] [Abstract][Full Text] [Related]
3. β-Cyclodextrin-Functionalized Fe Hasan K; Shehadi IA; Joseph RG; Patole SP; Elgamouz A ACS Omega; 2023 Jul; 8(26):23901-23912. PubMed ID: 37426276 [TBL] [Abstract][Full Text] [Related]
4. Catalytic reduction of nitroarenes by palladium nanoparticles decorated silica@poly(chitosan-N-isopropylacrylamide-methacrylic acid) hybrid microgels. Arif M; Rauf A; Raza H; Moussa SB; Haroon SM; Alzahrani AYA; Akhter T Int J Biol Macromol; 2024 Aug; 275(Pt 1):133633. PubMed ID: 38964695 [TBL] [Abstract][Full Text] [Related]
5. Polymer microgels for the stabilization of gold nanoparticles and their application in the catalytic reduction of nitroarenes in aqueous media. Arif M; Shahid M; Irfan A; Nisar J; Wu W; Farooqi ZH; Begum R RSC Adv; 2022 Feb; 12(9):5105-5117. PubMed ID: 35425556 [TBL] [Abstract][Full Text] [Related]
6. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system. Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277 [TBL] [Abstract][Full Text] [Related]
7. Temperature-Controlled Catalysis by Core-Shell-Satellite AuAg@pNIPAM@Ag Hybrid Microgels: A Highly Efficient Catalytic Thermoresponsive Nanoreactor. Tzounis L; Doña M; Lopez-Romero JM; Fery A; Contreras-Caceres R ACS Appl Mater Interfaces; 2019 Aug; 11(32):29360-29372. PubMed ID: 31329406 [TBL] [Abstract][Full Text] [Related]
8. Silver nanoparticles supported over mesoporous alumina as an efficient nanocatalyst for N-alkylation of hetero (aromatic) amines and aromatic amines using alcohols as alkylating agent. Paul P; Bhanja P; Salam N; Mandi U; Bhaumik A; Alam SM; Islam SM J Colloid Interface Sci; 2017 May; 493():206-217. PubMed ID: 28092819 [TBL] [Abstract][Full Text] [Related]
9. Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. Nasrollahzadeh M; Sajadi SM; Rostami-Vartooni A; Alizadeh M; Bagherzadeh M J Colloid Interface Sci; 2016 Mar; 466():360-8. PubMed ID: 26752431 [TBL] [Abstract][Full Text] [Related]
10. Guar gum mediated synthesis of NiO nanoparticles: An efficient catalyst for reduction of nitroarenes with sodium borohydride. Baranwal K; Dwivedi LM; Shehala ; Singh V Int J Biol Macromol; 2018 Dec; 120(Pt B):2431-2441. PubMed ID: 30193919 [TBL] [Abstract][Full Text] [Related]
11. Palladium Nanoparticles on a Creatine-Modified Bentonite Support: An Efficient and Sustainable Catalyst for Nitroarene Reduction. Gholinejad M; Rasouli Z; Najera C; Sansano JM Chempluschem; 2019 Aug; 84(8):1122-1129. PubMed ID: 31943954 [TBL] [Abstract][Full Text] [Related]
12. Green Biosynthesis of Spherical Silver Nanoparticles by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities. Farhadi S; Ajerloo B; Mohammadi A Acta Chim Slov; 2017 Mac; 64(1):129-143. PubMed ID: 28380222 [TBL] [Abstract][Full Text] [Related]
13. Engineering of responsive polymer based nano-reactors for facile mass transport and enhanced catalytic degradation of 4-nitrophenol. Begum R; Farooqi ZH; Butt Z; Wu Q; Wu W; Irfan A J Environ Sci (China); 2018 Oct; 72():43-52. PubMed ID: 30244750 [TBL] [Abstract][Full Text] [Related]
14. Ag@polypyrrole: A highly efficient nanocatalyst for the N-alkylation of amines using alcohols. Mandi U; Kundu SK; Salam N; Bhaumik A; Islam SM J Colloid Interface Sci; 2016 Apr; 467():291-299. PubMed ID: 26809107 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of NIPMAM based polymer microgel network assisted rhodium nanoparticles for reductive degradation of toxic azo dyes. Iqbal S; Iqbal N; Musaddiq S; Farooqi ZH; Habila MA; Wabaidur SM; Iqbal A Heliyon; 2024 Feb; 10(3):e25385. PubMed ID: 38356584 [TBL] [Abstract][Full Text] [Related]
17. Bioreductive deposition of highly dispersed Ag nanoparticles on carbon nanotubes with enhanced catalytic degradation for 4-nitrophenol assisted by Shewanella oneidensis MR-1. Song X; Shi X Environ Sci Pollut Res Int; 2017 Jan; 24(3):3038-3044. PubMed ID: 27854056 [TBL] [Abstract][Full Text] [Related]
18. Facile fabrication of silver nanoparticles deposited cellulose microfiber nanocomposites for catalytic application. Xu P; Cen C; Chen N; Lin H; Wang Q; Xu N; Tang J; Teng Z J Colloid Interface Sci; 2018 Sep; 526():194-200. PubMed ID: 29729970 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis of silver nanoparticles in a crosslinked polymeric system by in situ reduction method for catalytic reduction of 4-nitroaniline. Farooqi ZH; Khalid R; Begum R; Farooq U; Wu Q; Wu W; Ajmal M; Irfan A; Naseem K Environ Technol; 2019 Jun; 40(15):2027-2036. PubMed ID: 29384040 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of bimetallic nanoparticles loaded on to PNIPAM hybrid microgel and their catalytic activity. Kakar MU; Khan K; Akram M; Sami R; Khojah E; Iqbal I; Helal M; Hakeem A; Deng Y; Dai R Sci Rep; 2021 Jul; 11(1):14759. PubMed ID: 34285274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]