These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 31176126)

  • 1. The synergistic interaction between sulfate-reducing bacteria and pyrogenic carbonaceous matter in DDT decay.
    Ding K; Duran M; Xu W
    Chemosphere; 2019 Oct; 233():252-260. PubMed ID: 31176126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Black Carbon Facilitated Dechlorination of DDT and its Metabolites by Sulfide.
    Ding K; Xu W
    Environ Sci Technol; 2016 Dec; 50(23):12976-12983. PubMed ID: 27934256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of thiosulfate in bisulfite reduction as catalyzed by Desulfovibrio vulgaris.
    Findley JE; Akagi JM
    J Bacteriol; 1970 Sep; 103(3):741-4. PubMed ID: 5474884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of thiosulfate from sulfite by Desulfovibrio vulgaris.
    Suh B; Akagi JM
    J Bacteriol; 1969 Jul; 99(1):210-5. PubMed ID: 5802606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process.
    Qian J; Wang L; Wu Y; Bond PL; Zhang Y; Chang X; Deng B; Wei L; Li Q; Wang Q
    Chemosphere; 2017 Jun; 176():212-220. PubMed ID: 28264778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical studies on sulfate-ruducing bacteria. 8. Sulfite reductase from Desulfovibrio vulgaris--mechanism of trithionate, thiosulfate, and sulfide formation and enzymatic properties.
    Kobayashi K; Seki Y; Ishimoto M
    J Biochem; 1974 Mar; 75(3):519-29. PubMed ID: 4365884
    [No Abstract]   [Full Text] [Related]  

  • 7. Dissimilatory reduction of bisulfite by Desulfovibrio vulgaris.
    Drake HL; Akagi JM
    J Bacteriol; 1978 Dec; 136(3):916-23. PubMed ID: 721780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kinetic study of Cr(VI) reduction by calcium polysulfide.
    Chrysochoou M; Ting A
    Sci Total Environ; 2011 Sep; 409(19):4072-7. PubMed ID: 21737123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Product analysis of bisulfite reductase activity isolated from Desulfovibrio vulgaris.
    Drake HL; Akagi JM
    J Bacteriol; 1976 May; 126(2):733-8. PubMed ID: 177403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-promoted hydrolysis of 2,4,6-trinitrotoluene and 2,4-dinitroanisole on pyrogenic carbonaceous matter.
    Ding K; Byrnes C; Bridge J; Grannas A; Xu W
    Chemosphere; 2018 Apr; 197():603-610. PubMed ID: 29407823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution.
    Fry B; Ruf W; Gest H; Hayes JM
    Isot Geosci; 1988; 73():205-10. PubMed ID: 11538336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of nitroaromatics sorbed to black carbon by direct reaction with sorbed sulfides.
    Xu W; Pignatello JJ; Mitch WA
    Environ Sci Technol; 2015 Mar; 49(6):3419-26. PubMed ID: 25671390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei.
    Townsend GT; Suflita JM
    Appl Environ Microbiol; 1997 Sep; 63(9):3594-9. PubMed ID: 9293011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced sulfur compound oxidation by Thiobacillus caldus.
    Hallberg KB; Dopson M; Lindström EB
    J Bacteriol; 1996 Jan; 178(1):6-11. PubMed ID: 8550443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis.
    Lie TJ; Godchaux W; Leadbetter ER
    Appl Environ Microbiol; 1999 Oct; 65(10):4611-7. PubMed ID: 10508097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting the performance of microbial fuel cells for sulfur pollutants removal.
    Zhao F; Rahunen N; Varcoe JR; Roberts AJ; Avignone-Rossa C; Thumser AE; Slade RC
    Biosens Bioelectron; 2009 Mar; 24(7):1931-6. PubMed ID: 19022647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bisulfite reductase of Desulfovibrio vulgaris: explanation for product formation.
    Drake HL; Akagi JM
    J Bacteriol; 1977 Oct; 132(1):139-43. PubMed ID: 914772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Thiosulfate as an intermediate product of bacterial sulfate reduction].
    Vaĭnshteĭn MB; Matrosov AG; Baskunov BP; Ziakun AM; Ivanov MV
    Mikrobiologiia; 1980; 49(6):855-8. PubMed ID: 7207258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polysulfide reduction using sulfate-reducing bacteria in a photocatalytic hydrogen generation system.
    Takahashi Y; Suto K; Inoue C; Chida T
    J Biosci Bioeng; 2008 Sep; 106(3):219-25. PubMed ID: 18929995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dechlorination of p,p'-DDTs coupled with sulfate reduction by novel sulfate-reducing bacterium Clostridium sp. BXM.
    Bao P; Hu ZY; Wang XJ; Chen J; Ba YX; Hua J; Zhu CY; Zhong M; Wu CY
    Environ Pollut; 2012 Mar; 162():303-10. PubMed ID: 22243878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.