These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31176318)

  • 1. A Bayesian approach for identification of ice Ih, ice Ic, high density, and low density liquid water with a torsional order parameter.
    Matsumoto M; Yagasaki T; Tanaka H
    J Chem Phys; 2019 Jun; 150(21):214504. PubMed ID: 31176318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice I
    Sakti AW; Nishimura Y; Chou CP; Nakai H
    J Phys Chem A; 2018 Jan; 122(1):33-40. PubMed ID: 29227657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signatures of sluggish dynamics and local structural ordering during ice nucleation.
    Martelli F; Palmer JC
    J Chem Phys; 2022 Mar; 156(11):114502. PubMed ID: 35317598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition between ices Ih and Ic in homogeneous water freezing.
    Zaragoza A; Conde MM; Espinosa JR; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2015 Oct; 143(13):134504. PubMed ID: 26450320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metastable phase equilibria in the ice II stability field. A Raman study of synthetic high-density water inclusions in quartz.
    Krüger Y; Mercury L; Canizarès A; Marti D; Simon P
    Phys Chem Chem Phys; 2019 Sep; 21(35):19554-19566. PubMed ID: 31464321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching local order parameters to classify water structures of ice Ih, Ic, and liquid.
    Doi H; Takahashi KZ; Aoyagi T
    J Chem Phys; 2021 Apr; 154(16):164505. PubMed ID: 33940820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase equilibrium of liquid water and hexagonal ice from enhanced sampling molecular dynamics simulations.
    Piaggi PM; Car R
    J Chem Phys; 2020 May; 152(20):204116. PubMed ID: 32486691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water.
    Reinhardt A; Doye JP; Noya EG; Vega C
    J Chem Phys; 2012 Nov; 137(19):194504. PubMed ID: 23181323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method.
    Ambler M; Vorselaars B; Allen MP; Quigley D
    J Chem Phys; 2017 Feb; 146(7):074701. PubMed ID: 28228014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental evidence of low-density liquid water upon rapid decompression.
    Lin C; Smith JS; Sinogeikin SV; Shen G
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2010-2015. PubMed ID: 29440411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuations and local ice structure in model supercooled water.
    Overduin SD; Patey GN
    J Chem Phys; 2015 Sep; 143(9):094504. PubMed ID: 26342374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics study of grain boundaries and triple junctions in ice.
    Yagasaki T; Matsumoto M; Tanaka H
    J Chem Phys; 2020 Sep; 153(12):124502. PubMed ID: 33003762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physically constrained classical description of the homogeneous nucleation of ice in water.
    Koop T; Murray BJ
    J Chem Phys; 2016 Dec; 145(21):211915. PubMed ID: 28799369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of ice nucleation in liquid water.
    Wang X; Wang S; Xu Q; Mi J
    J Phys Chem B; 2015 Jan; 119(4):1660-8. PubMed ID: 25546012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of coexisting liquid phases of supercooled water: analogy with ice polymorphs.
    Jedlovszky P; Pártay LB; Bartók AP; Garberoglio G; Vallauri R
    J Chem Phys; 2007 Jun; 126(24):241103. PubMed ID: 17614529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous ice nucleation from supercooled water.
    Li T; Donadio D; Russo G; Galli G
    Phys Chem Chem Phys; 2011 Nov; 13(44):19807-13. PubMed ID: 21989826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two liquid phases of water in the deeply supercooled region and their roles in crystallization and formation of LiCl solution.
    Souda R
    J Phys Chem B; 2007 May; 111(20):5628-34. PubMed ID: 17465534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ice is born in low-mobility regions of supercooled liquid water.
    Fitzner M; Sosso GC; Cox SJ; Michaelides A
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2009-2014. PubMed ID: 30670640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and OH-stretch spectroscopy of low- and high-density amorphous ices.
    Tainter CJ; Shi L; Skinner JL
    J Chem Phys; 2014 Apr; 140(13):134503. PubMed ID: 24712797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.