These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31176323)

  • 1. Neural network based quasi-diabatic Hamiltonians with symmetry adaptation and a correct description of conical intersections.
    Guan Y; Guo H; Yarkony DR
    J Chem Phys; 2019 Jun; 150(21):214101. PubMed ID: 31176323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exclusive Neural Network Representation of the Quasi-Diabatic Hamiltonians Including Conical Intersections.
    Hong Y; Yin Z; Guan Y; Zhang Z; Fu B; Zhang DH
    J Phys Chem Lett; 2020 Sep; 11(18):7552-7558. PubMed ID: 32835486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2
    Guan Y; Zhang DH; Guo H; Yarkony DR
    Phys Chem Chem Phys; 2019 Jul; 21(26):14205-14213. PubMed ID: 30523350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Network Representation of Three-State Quasidiabatic Hamiltonians Based on the Transformation Properties from a Valence Bond Model: Three Singlet States of H
    Yin Z; Braams BJ; Fu B; Zhang DH
    J Chem Theory Comput; 2021 Mar; 17(3):1678-1690. PubMed ID: 33645221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fundamental invariant-neural network representation of quasi-diabatic Hamiltonians for the two lowest states of H
    Yin Z; Braams BJ; Guan Y; Fu B; Zhang DH
    Phys Chem Chem Phys; 2021 Jan; 23(2):1082-1091. PubMed ID: 33346765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permutation invariant polynomial neural network based diabatic ansatz for the (E + A) × (e + a) Jahn-Teller and Pseudo-Jahn-Teller systems.
    Guan Y; Yarkony DR; Zhang DH
    J Chem Phys; 2022 Jul; 157(1):014110. PubMed ID: 35803819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the representation of coupled adiabatic potential energy surfaces using quasi-diabatic Hamiltonians: a distributed origins expansion approach.
    Zhu X; Yarkony DR
    J Chem Phys; 2012 May; 136(17):174110. PubMed ID: 22583213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-diabatic representations of adiabatic potential energy surfaces coupled by conical intersections including bond breaking: a more general construction procedure and an analysis of the diabatic representation.
    Zhu X; Yarkony DR
    J Chem Phys; 2012 Dec; 137(22):22A511. PubMed ID: 23249048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-state diabatic potential energy surfaces of ClH
    Yin Z; Guan Y; Fu B; Zhang DH
    Phys Chem Chem Phys; 2019 Sep; 21(36):20372-20383. PubMed ID: 31498342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling a Unified Description of Both Internal Conversion and Intersystem Crossing in Formaldehyde: A Global Coupled Quasi-Diabatic Hamiltonian for Its S
    Guan Y; Xie C; Guo H; Yarkony DR
    J Chem Theory Comput; 2021 Jul; 17(7):4157-4168. PubMed ID: 34132545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enabling complete multichannel nonadiabatic dynamics: A global representation of the two-channel coupled, 1,2
    Wang Y; Guan Y; Guo H; Yarkony DR
    J Chem Phys; 2021 Mar; 154(9):094121. PubMed ID: 33685133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing Diabatic Potential Energy Matrices with Neural Networks Based on Adiabatic Energies and Physical Considerations: Toward Quantum Dynamic Accuracy.
    Li C; Hou S; Xie C
    J Chem Theory Comput; 2023 Jun; 19(11):3063-3079. PubMed ID: 37216273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate Neural Network Representation of the Ab Initio Determined Spin-Orbit Interaction in the Diabatic Representation Including the Effects of Conical Intersections.
    Guan Y; Yarkony DR
    J Phys Chem Lett; 2020 Mar; 11(5):1848-1858. PubMed ID: 32062966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices.
    Xie C; Zhu X; Yarkony DR; Guo H
    J Chem Phys; 2018 Oct; 149(14):144107. PubMed ID: 30316273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward eliminating the electronic structure bottleneck in nonadiabatic dynamics on the fly: an algorithm to fit nonlocal, quasidiabatic, coupled electronic state Hamiltonians based on ab initio electronic structure data.
    Zhu X; Yarkony DR
    J Chem Phys; 2010 Mar; 132(10):104101. PubMed ID: 20232941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A diabatization method based upon integrating the diabatic potential gradient difference.
    Li F; Liu X; Ma H; Bian W
    Phys Chem Chem Phys; 2024 Jun; 26(23):16477-16487. PubMed ID: 38656815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems.
    Williams DMG; Eisfeld W
    J Phys Chem A; 2020 Sep; 124(37):7608-7621. PubMed ID: 32786968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the nonadiabatic collisional quenching of OH(A) by H
    Malbon CL; Zhao B; Guo H; Yarkony DR
    Phys Chem Chem Phys; 2020 Jun; 22(24):13516-13527. PubMed ID: 32538422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constructing diabatic representations using adiabatic and approximate diabatic data--Coping with diabolical singularities.
    Zhu X; Yarkony DR
    J Chem Phys; 2016 Jan; 144(4):044104. PubMed ID: 26827199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate diabatization based on combined-hyperbolic-inverse-power-representation: 1,2 2A' states of BeH2.
    Guan Y; Chen Q; Varandas AJC
    J Chem Phys; 2024 Apr; 160(15):. PubMed ID: 38624109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.