These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31176435)

  • 1. Comparison between Targeted Radionuclide Therapy of Bone Metastases Based on β-Emitting and α-Emitting Radionuclides.
    Sadremomtaz A; Masoumi M
    J Med Imaging Radiat Sci; 2019 Jun; 50(2):272-279. PubMed ID: 31176435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An assessment of bone-seeking radionuclides for palliation of metastatic bone pain in a vertebral model.
    Sadremomtaz A; Masoumi M
    Ann Nucl Med; 2019 Apr; 33(4):252-264. PubMed ID: 30659480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets.
    Dant JT; Richardson RB; Nie LH
    Phys Med Biol; 2013 May; 58(10):3301-19. PubMed ID: 23615276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Cell and Tumor-Metastasis Dosimetry with the Particle and Heavy Ion Transport Code System (PHITS) Software for Targeted Alpha-Particle Radionuclide Therapy.
    Lee D; Li M; Bednarz B; Schultz MK
    Radiat Res; 2018 Sep; 190(3):236-247. PubMed ID: 29944461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of microdistribution of alpha and beta-emitters in targeted radionuclide therapies on delivered absorbed dose in a GATE model of bone marrow.
    Tranel J; Feng FY; James SS; Hope TA
    Phys Med Biol; 2021 Jan; 66(3):035016. PubMed ID: 33321484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods.
    Guerra Liberal FD; Tavares AA; Tavares JM
    Med Phys; 2014 Nov; 41(11):114101. PubMed ID: 25370676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo Evaluation of Auger Electron-Emitting Theranostic Radionuclides.
    Falzone N; Fernández-Varea JM; Flux G; Vallis KA
    J Nucl Med; 2015 Sep; 56(9):1441-6. PubMed ID: 26205298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative studies on the potential use of
    Zakaly HMH; Mostafa MYA; Deryabina D; Zhukovsky M
    Int J Radiat Biol; 2020 Jun; 96(6):779-789. PubMed ID: 32043915
    [No Abstract]   [Full Text] [Related]  

  • 9. Dosimetric characterization of radionuclides for systemic tumor therapy: influence of particle range, photon emission, and subcellular distribution.
    Uusijärvi H; Bernhardt P; Ericsson T; Forssell-Aronsson E
    Med Phys; 2006 Sep; 33(9):3260-9. PubMed ID: 17022220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Considerations in the selection of radiopharmaceuticals for palliation of bone pain from metastatic osseous lesions.
    Bouchet LG; Bolch WE; Goddu SM; Howell RW; Rao DV
    J Nucl Med; 2000 Apr; 41(4):682-7. PubMed ID: 10768569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling of radiobiological effects in bone metastases for different radionuclides.
    Liberal FDCG; Tavares AAS; Tavares JMRS
    Int J Radiat Biol; 2017 Jun; 93(6):627-636. PubMed ID: 28276897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of BMI in dosimetry of
    Fallahpoor M; Abbasi M; Asghar Parach A; Kalantari F
    Appl Radiat Isot; 2017 Jun; 124():1-6. PubMed ID: 28284122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific absorbed fractions and radionuclide S-values for tumors of varying size and composition.
    Olguin E; President B; Ghaly M; Frey E; Sgouros G; Bolch WE
    Phys Med Biol; 2020 Dec; 65(23):235015. PubMed ID: 32992308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
    Papadimitroulas P; Loudos G; Nikiforidis GC; Kagadis GC
    Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo dose voxel kernel calculations of beta-emitting and Auger-emitting radionuclides for internal dosimetry: A comparison between EGSnrcMP and EGS4.
    Strigari L; Menghi E; D'Andrea M; Benassi M
    Med Phys; 2006 Sep; 33(9):3383-9. PubMed ID: 17022234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative comparisons of cancer induction in humans by internally deposited radionuclides and external radiation.
    Harrison JD; Muirhead CR
    Int J Radiat Biol; 2003 Jan; 79(1):1-13. PubMed ID: 12556326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marrow toxicity of 33P-versus 32P-orthophosphate: implications for therapy of bone pain and bone metastases.
    Goddu SM; Bishayee A; Bouchet LG; Bolch WE; Rao DV; Howell RW
    J Nucl Med; 2000 May; 41(5):941-51. PubMed ID: 10809212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice.
    Henriksen G; Fisher DR; Roeske JC; Bruland ØS; Larsen RH
    J Nucl Med; 2003 Feb; 44(2):252-9. PubMed ID: 12571218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.