These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31176435)

  • 21. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases.
    Hindorf C; Chittenden S; Aksnes AK; Parker C; Flux GD
    Nucl Med Commun; 2012 Jul; 33(7):726-32. PubMed ID: 22513884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetically enhanced protection of bone marrow from beta particles emitted by bone-seeking radionuclides: theory of application.
    Raylman RR; Wahl RL
    Med Phys; 1995 Aug; 22(8):1285-92. PubMed ID: 7476715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a stand-alone precalculated Monte Carlo code to calculate the dose by alpha and beta emitters from the Ra-224 decay chain.
    Hoseini-Ghahfarokhi M; Kamio Y; Mondor J; Jabbari K; Carrier JF
    Med Phys; 2023 Aug; 50(8):5176-5188. PubMed ID: 37161766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Monte Carlo Investigation of Dose Point Kernel Scaling for α-Emitting Radionuclides.
    Khan AU; DeWerd LA
    Cancer Biother Radiopharm; 2021 Apr; 36(3):252-259. PubMed ID: 33337280
    [No Abstract]   [Full Text] [Related]  

  • 25. Absorbed fractions in ellipsoidal volumes for beta(-) radionuclides employed in internal radiotherapy.
    Amato E; Lizio D; Baldari S
    Phys Med Biol; 2009 Jul; 54(13):4171-80. PubMed ID: 19521004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dosimetry of bone metastases in targeted radionuclide therapy with alpha-emitting (223)Ra-dichloride.
    Pacilio M; Ventroni G; De Vincentis G; Cassano B; Pellegrini R; Di Castro E; Frantellizzi V; Follacchio GA; Garkavaya T; Lorenzon L; Ialongo P; Pani R; Mango L
    Eur J Nucl Med Mol Imaging; 2016 Jan; 43(1):21-33. PubMed ID: 26266887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Absorbed doses for internal radiotherapy from 22 beta-emitting radionuclides: beta dosimetry of small spheres.
    Bardiès M; Chatal JF
    Phys Med Biol; 1994 Jun; 39(6):961-81. PubMed ID: 15551573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solid-tumor radionuclide therapy dosimetry: new paradigms in view of tumor microenvironment and angiogenesis.
    Zhu X; Palmer MR; Makrigiorgos GM; Kassis AI
    Med Phys; 2010 Jun; 37(6):2974-84. PubMed ID: 20632610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dose rate conversion coefficients for ocular contamination in nuclear medicine: A Monte Carlo simulation with experimental validation.
    Hoeijmakers EJI; Hoenen K; Bauwens M; Eekers DBP; Jeukens CRLPN; Wierts R
    Med Phys; 2024 Aug; 51(8):5645-5653. PubMed ID: 38588509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons.
    Xie T; Han D; Liu Y; Sun W; Liu Q
    Med Phys; 2010 May; 37(5):2167-78. PubMed ID: 20527551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mouse S-factors based on Monte Carlo simulations in the anatomical realistic Moby phantom for internal dosimetry.
    Larsson E; Strand SE; Ljungberg M; Jönsson BA
    Cancer Biother Radiopharm; 2007 Jun; 22(3):438-42. PubMed ID: 17651052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dose point kernels for 2,174 radionuclides.
    Graves SA; Flynn RT; Hyer DE
    Med Phys; 2019 Nov; 46(11):5284-5293. PubMed ID: 31461537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active and passive dosimetry for beta-emitting radiopharmaceutical therapy agents in a custom SPECT/CT compatible phantom.
    Bertinetti A; Garcia T; Palmer B; Rodrigues M; Bradshaw T; Vija AH; Culberson W
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38684165
    [No Abstract]   [Full Text] [Related]  

  • 35. Targeted radiotherapy of bone malignancies.
    Jansen DR; Krijger GC; Kolar ZI; Zonnenberg BA; Zeevaart JR
    Curr Drug Discov Technol; 2010 Dec; 7(4):233-46. PubMed ID: 21034411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absorbed fractions for electrons and beta particles in spheres of various sizes.
    Siegel JA; Stabin MG
    J Nucl Med; 1994 Jan; 35(1):152-6. PubMed ID: 8271037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dosimetric Comparison of Different Radionuclides Used in Metastatic Bone Disease Treatment.
    Kökkülünk HT
    Curr Radiopharm; 2023; 16(1):44-49. PubMed ID: 35946100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EGS4 Monte Carlo determination of the beta dose kernel in water.
    Simpkin DJ; Mackie TR
    Med Phys; 1990; 17(2):179-86. PubMed ID: 2333044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted alpha therapy: part I.
    Elgqvist J
    Curr Radiopharm; 2011 Jul; 4(3):176. PubMed ID: 22201706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monte Carlo calculations of absorbed doses in tumours using a modified MOBY mouse phantom for pre-clinical dosimetry studies.
    Larsson E; Ljungberg M; Strand SE; Jönsson BA
    Acta Oncol; 2011 Aug; 50(6):973-80. PubMed ID: 21767199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.