BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31176723)

  • 1. Protein-functionalized nanoparticles derived from end-functional polymers and polymer prodrugs for crossing the blood-brain barrier.
    Cox A; Vinciguerra D; Re F; Magro RD; Mura S; Masserini M; Couvreur P; Nicolas J
    Eur J Pharm Biopharm; 2019 Sep; 142():70-82. PubMed ID: 31176723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles.
    Voigt N; Henrich-Noack P; Kockentiedt S; Hintz W; Tomas J; Sabel BA
    Eur J Pharm Biopharm; 2014 May; 87(1):19-29. PubMed ID: 24607790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalized PLGA nanoparticles prepared by nano-emulsion templating interact selectively with proteins involved in the transport through the blood-brain barrier.
    Monge M; Fornaguera C; Quero C; Dols-Perez A; Calderó G; Grijalvo S; García-Celma MJ; Rodríguez-Abreu C; Solans C
    Eur J Pharm Biopharm; 2020 Nov; 156():155-164. PubMed ID: 32927077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterotelechelic polymer prodrug nanoparticles: Adaptability to different drug combinations and influence of the dual functionalization on the cytotoxicity.
    Vinciguerra D; Jacobs M; Denis S; Mougin J; Guillaneuf Y; Lazzari G; Zhu C; Mura S; Couvreur P; Nicolas J
    J Control Release; 2019 Feb; 295():223-236. PubMed ID: 30611900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood-brain barrier-penetrating amphiphilic polymer nanoparticles deliver docetaxel for the treatment of brain metastases of triple negative breast cancer.
    He C; Cai P; Li J; Zhang T; Lin L; Abbasi AZ; Henderson JT; Rauth AM; Wu XY
    J Control Release; 2017 Jan; 246():98-109. PubMed ID: 28017889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcellular Model for Neutral and Charged Nanoparticles Across an In Vitro Blood-Brain Barrier.
    Zhang L; Fan J; Li G; Yin Z; Fu BM
    Cardiovasc Eng Technol; 2020 Dec; 11(6):607-620. PubMed ID: 33113565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the Inability of Functionalized Nanoparticles to Cross the Blood-Brain Barrier and Target Specific Cells in Vivo.
    Naidu PSR; Gavriel N; Gray CGG; Bartlett CA; Toomey LM; Kretzmann JA; Patalwala D; McGonigle T; Denham E; Hee C; Ho D; Taylor NL; Norret M; Smith NM; Dunlop SA; Iyer KS; Fitzgerald M
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22085-22095. PubMed ID: 31150197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mustard-inspired delivery shuttle for enhanced blood-brain barrier penetration and effective drug delivery in glioma therapy.
    Wang N; Sun P; Lv M; Tong G; Jin X; Zhu X
    Biomater Sci; 2017 May; 5(5):1041-1050. PubMed ID: 28378865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Dependent Internalization of Polymer-Coated Silica Nanoparticles in Brain Endothelial Cells and Morphological and Functional Effects on the Blood-Brain Barrier.
    Bittner A; Gosselet F; Sevin E; Dehouck L; Ducray AD; Gaschen V; Stoffel MH; Cho H; Mevissen M
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shuttle-mediated nanoparticle delivery to the blood-brain barrier.
    Guarnieri D; Falanga A; Muscetti O; Tarallo R; Fusco S; Galdiero M; Galdiero S; Netti PA
    Small; 2013 Mar; 9(6):853-62. PubMed ID: 23135878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Andrographolide-loaded nanoparticles for brain delivery: Formulation, characterisation and in vitro permeability using hCMEC/D3 cell line.
    Guccione C; Oufir M; Piazzini V; Eigenmann DE; Jähne EA; Zabela V; Faleschini MT; Bergonzi MC; Smiesko M; Hamburger M; Bilia AR
    Eur J Pharm Biopharm; 2017 Oct; 119():253-263. PubMed ID: 28652141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of non-endothelial cells on the penetration of nanoparticles through the blood brain barrier.
    Moura RP; Almeida A; Sarmento B
    Prog Neurobiol; 2017 Dec; 159():39-49. PubMed ID: 28899762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper transport mediated by nanocarrier systems in a blood-brain barrier in vitro model.
    Fehse S; Nowag S; Quadir M; Kim KS; Haag R; Multhaup G
    Biomacromolecules; 2014 May; 15(5):1910-9. PubMed ID: 24725062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, Synthesis and Characterization of Novel Co-Polymers Decorated with Peptides for the Selective Nanoparticle Transport across the Cerebral Endothelium.
    Falanga AP; Melone P; Cagliani R; Borbone N; D'Errico S; Piccialli G; Netti PA; Guarnieri D
    Molecules; 2018 Jul; 23(7):. PubMed ID: 29986452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle surface charges alter blood-brain barrier integrity and permeability.
    Lockman PR; Koziara JM; Mumper RJ; Allen DD
    J Drug Target; 2004; 12(9-10):635-41. PubMed ID: 15621689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility Study of the Permeability and Uptake of Mesoporous Silica Nanoparticles across the Blood-Brain Barrier.
    Baghirov H; Karaman D; Viitala T; Duchanoy A; Lou YR; Mamaeva V; Pryazhnikov E; Khiroug L; de Lange Davies C; Sahlgren C; Rosenholm JM
    PLoS One; 2016; 11(8):e0160705. PubMed ID: 27547955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamer Functionalization of Nanosystems for Glioblastoma Targeting through the Blood-Brain Barrier.
    Monaco I; Camorani S; Colecchia D; Locatelli E; Calandro P; Oudin A; Niclou S; Arra C; Chiariello M; Cerchia L; Comes Franchini M
    J Med Chem; 2017 May; 60(10):4510-4516. PubMed ID: 28471660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting nanoparticles to the brain by exploiting the blood-brain barrier impermeability to selectively label the brain endothelium.
    Gonzalez-Carter D; Liu X; Tockary TA; Dirisala A; Toh K; Anraku Y; Kataoka K
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19141-19150. PubMed ID: 32703811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier.
    Fornaguera C; Dols-Perez A; Calderó G; García-Celma MJ; Camarasa J; Solans C
    J Control Release; 2015 Aug; 211():134-43. PubMed ID: 26057857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Major effects on blood-retina barrier passage by minor alterations in design of polybutylcyanoacrylate nanoparticles.
    You Q; Hopf T; Hintz W; Rannabauer S; Voigt N; van Wachem B; Henrich-Noack P; Sabel BA
    J Drug Target; 2019 Mar; 27(3):338-346. PubMed ID: 30280953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.