BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31176804)

  • 1. Tunable hydrogels for controlling phenotypic cancer cell states to model breast cancer dormancy and reactivation.
    Pradhan S; Slater JH
    Biomaterials; 2019 Sep; 215():119177. PubMed ID: 31176804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Hydrogel Adhesivity and Degradability to Model the Influence of Premetastatic Niche Matrix Properties on Breast Cancer Dormancy and Reactivation.
    Farino Reyes CJ; Slater JH
    Adv Biol (Weinh); 2022 May; 6(5):e2200012. PubMed ID: 35277951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Influence of Ligand Density and Degradability on Hydrogel Induced Breast Cancer Dormancy and Reactivation.
    Farino Reyes CJ; Pradhan S; Slater JH
    Adv Healthc Mater; 2021 Jun; 10(11):e2002227. PubMed ID: 33929776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Datasets describing hydrogel properties and cellular metrics for modeling of tumor dormancy.
    Pradhan S; Slater JH
    Data Brief; 2019 Aug; 25():104128. PubMed ID: 31312698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Matrix-Induced Dormancy on Metastatic Breast Cancer Chemoresistance.
    Farino CJ; Pradhan S; Slater JH
    ACS Appl Bio Mater; 2020 Sep; 3(9):5832-5844. PubMed ID: 34913030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Varying the RGD concentration on a hyaluronic acid hydrogel influences dormancy versus proliferation in brain metastatic breast cancer cells.
    Goodarzi K; Lane R; Rao SS
    J Biomed Mater Res A; 2024 May; 112(5):710-720. PubMed ID: 38018303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells.
    Narkhede AA; Crenshaw JH; Crossman DK; Shevde LA; Rao SS
    Acta Biomater; 2020 Apr; 107():65-77. PubMed ID: 32119920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy.
    Pradhan S; Slater JH
    MethodsX; 2019; 6():2744-2766. PubMed ID: 31828024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEG-fibrinogen hydrogels for three-dimensional breast cancer cell culture.
    Pradhan S; Hassani I; Seeto WJ; Lipke EA
    J Biomed Mater Res A; 2017 Jan; 105(1):236-252. PubMed ID: 27615742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties.
    Clark AM; Wheeler SE; Young CL; Stockdale L; Shepard Neiman J; Zhao W; Stolz DB; Venkataramanan R; Lauffenburger D; Griffith L; Wells A
    Lab Chip; 2016 Dec; 17(1):156-168. PubMed ID: 27910972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of matrix stiffness on the behavior of brain metastatic breast cancer cells in a biomimetic hyaluronic acid hydrogel platform.
    Narkhede AA; Crenshaw JH; Manning RM; Rao SS
    J Biomed Mater Res A; 2018 Jul; 106(7):1832-1841. PubMed ID: 29468800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct phenotypes of cancer cells on tissue matrix gel.
    Ruud KF; Hiscox WC; Yu I; Chen RK; Li W
    Breast Cancer Res; 2020 Jul; 22(1):82. PubMed ID: 32736579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Biomimetic Hyaluronic Acid Hydrogel Models Mass Dormancy in Brain Metastatic Breast Cancer Spheroids.
    Kondapaneni RV; Shevde LA; Rao SS
    Adv Biol (Weinh); 2023 Jan; 7(1):e2200114. PubMed ID: 36354182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
    Lindberg GCJ; Longoni A; Lim KS; Rosenberg AJ; Hooper GJ; Gawlitta D; Woodfield TBF
    Acta Biomater; 2019 Feb; 85():117-130. PubMed ID: 30572166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels.
    Xin S; Gregory CA; Alge DL
    Acta Biomater; 2020 Jan; 101():227-236. PubMed ID: 31711899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients.
    Borgen E; Rypdal MC; Sosa MS; Renolen A; Schlichting E; Lønning PE; Synnestvedt M; Aguirre-Ghiso JA; Naume B
    Breast Cancer Res; 2018 Oct; 20(1):120. PubMed ID: 30322396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered extracellular microenvironment with a tunable mechanical property for controlling cell behavior and cardiomyogenic fate of cardiac stem cells.
    Choi MY; Kim JT; Lee WJ; Lee Y; Park KM; Yang YI; Park KD
    Acta Biomater; 2017 Mar; 50():234-248. PubMed ID: 28063988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible dynamic mechanics of hydrogels for regulation of cellular behavior.
    Jeon O; Kim TH; Alsberg E
    Acta Biomater; 2021 Dec; 136():88-98. PubMed ID: 34563721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of matrix properties on growth and morphogenesis of human pancreatic ductal epithelial cells in 3D.
    Raza A; Ki CS; Lin CC
    Biomaterials; 2013 Jul; 34(21):5117-27. PubMed ID: 23602364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.